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Abstract

Let X be an arithmetic scheme (i.e., separated, of finite type over
SpecZ) of Krull dimension 1. For the associated zeta function ((X,s),
we write down a formula for the special value at s = n < 0 in terms of
the étale motivic cohomology of X and a regulator. We prove it in the
case when for each generic point n € X with char x(n) = 0, the extension
k(n)/Q is abelian. We conjecture that the formula holds for any one-
dimensional arithmetic scheme.

This is a consequence of the Weil-étale formalism developed by the
author in [2] and [3], following the work of Flach and Morin [8]. We
also calculate the Weil-étale cohomology of one-dimensional arithmetic
schemes and show that our special value formula is a particular case of
the main conjecture from [3].

1 Introduction

Let X be an arithmetic scheme, by which we mean in this text that it is
separated and of finite type over SpecZ. The zeta function associated to X
(see, e.g. [36]) is given by

1
C(X,s) = H W?

zeX
closed pt.

where the norm of a closed point € X is the size of the corresponding residue
field:
N(z) = |r(z)| = [Ox.a/mx 2]

The above product converges for Res > dim X and is supposed to have a
meromorphic continuation to the whole complex plane. Although the latter is a
wide-open conjecture in general, it is well-known for one-dimensional schemes,
which is the case of interest in this article.

If {(X, s) admits a meromorphic continuation around s = n, we denote by

dyp, = ords—y, (X, s) (1)



the vanishing order of {(X,s) at s = n. The corresponding special value
of ((X,s) at s = n is defined as the leading nonzero coefficient of the Taylor
expansion:

¢*(X,m) 1= lim (s — n) = (X, 5).

Since the 19th century, many formulas (both conjectural and unconditional)
have been proposed to interpret the numbers (*(X,n) in terms of geometric
and algebraic invariants attached to X. A primordial example is Dirichlet’s
analytic class number formula. For a number field F'/Q, we denote by Op
the corresponding ring of integers. Then

Cr(s) :=((Spec Op, s)

is the Dedekind zeta function attached to F'. From the well-known functional
equation for (r(s), it is easy to see that it has a zero at s = 0 of order r1 +ry—1,
where 1 (resp. 2rq) is the number of real embeddings F' < R (resp. complex
embeddings F' < C). The corresponding special value at s = 0 is given by

. h
(#(0) = —— Rp, (2)

WF
where hp = | Pic(Op)| is the class number, wp = [(OF);,,,| is the number of

roots of unity in F, and Rr € R is the regulator. See, e.g., [7, Chapter 5, §1]
or [34, §VIL5).

The question naturally arises whether there are formulas similar to (2) for
s =mn € Z other than s = 0 (or s = 1, which is related to s = 0 via the functional
equation). To do this, one must find a suitable generalization for the numbers
hg, wr, Rp. Many special value conjectures of varying generality go back to
this question.

Lichtenbaum proposed formulas in terms of algebraic K-theory in his pio-
neering work [27]. Later these were also reformulated in terms of p-adic cohomol-
ogy H'(Spec Op[1/ple, Zy(n)) for i = 1,2 and all primes p; the corresponding
formula is known as the cohomological Lichtenbaum conjecture; see, for
example, [17, §1.7] for the statement and a proof for abelian number fields F/Q.
We will not go into details here, since it is more convenient for us to use motivic
cohomology instead of working with p-adic cohomology for varying p.

A suitable generalization of Rg are the higher regulators considered since
the work of Borel [6] and later by Beilinson [1].

We do not attempt to give an adequate historical survey of the subject or
to write down all the conjectured formulas; the interested reader may consult,
e.g., [25, 16, 21].

Later, Lichtenbaum proposed a new research program known as Weil-étale
cohomology; see [28, 29, 30, 31]. It suggests that for an arithmetic scheme
X the special value of ((X,s) at s = n € Z can be expressed in terms of the
Weil-étale cohomology, which is a suitable modification of the étale motivic
cohomology of X. Flach and Morin in [8] gave a construction of Weil-étale



cohomology groups H %/V,C(X ,Z(n)) for a proper and regular arithmetic scheme
X, and stated a precise conjectural relation of HZWC(X,Z(n)) to the special
value (*(X,n).

In [8, §5.8.3] they write down an explicit formula for the case of X =
SpecOp. For n < 0 and in terms of cohomology groups H®(Xg, Z¢(n)), it
reads

i} B |H0(Xét,ZC(n))|
(r(n) =+ |H= (X e, Z¢(n)) tors]

The definition of H*(Xs,Z%(n)) is reviewed below. The regulator Rp, =
Rspec 0 ,n is defined in §6.

By [8, Proposition 5.35], formula (3) holds unconditionally for abelian num-
ber fields F/Q, via a reduction to the Tamagawa number conjecture of
Bloch-Kato-Fontaine—Perrin-Riou.

In particular, if we take n = 0, then Z¢(0) = G,,[1], and Rp is the usual
Dirichlet regulator, so (3) becomes the classical formula (2):

Rp, forn <0. (3)

« |H' (Spec Op,¢1, G| | Pic(Or)|
0)==+ 2 Rr=4+—""""'R ,
CF( ) ‘HO(SpeC OF,étv@m)tors' F |(OF);<OTS‘ E

We also mention that Flach and Morin have a similar special value formula
for n > 0, which includes a correction factor C(X,n) € Q. In this text we will
say nothing about the case of n > 0; the reader can consult [8] for more details,
and also the subsequent papers [10, 9, 33] which shed light on the nature of the
correction factor C(X,n).

For n < 0, the author in [2] and [3] extended the work of Flach and Morin
[8] to an arbitrary arithmetic scheme X (thus removing the assumption that
X is proper or regular). In this text, we would like to work out explicitly the
corresponding special value formula for one-dimensional arithmetic schemes.

To state the main result, it is useful to introduce the following terminology.

DEFINITION 1.1. We say that a one-dimensional arithmetic scheme X is abelian
if each generic point n € X with chark(n) = 0 corresponds to an abelian
extension x(n)/Q.

If X lives in positive characteristic, then it is trivially abelian. The term
“abelian” is ad hoc and was suggested by analogy with the notion of abelian
number fields. Hopefully there is no confusion with the “abelian schemes”
that are generalizations of abelian varieties.



Our goal is to prove the following result.

THEOREM 1.2. For an abelian one-dimensional arithmetic scheme X, the special
value of ((X,s) at s =n < 0 is given by

|HO(X &, 2°(n))|

*(X,n) = +2° Rx n. 4
) = S R e o K] W
Here
o H'(X4,7Z(n)) the étale motivic cohomology from [13];
e the correction factor 20 is given by
r1, N even,
0=0xn= 5
X {O, n odd, (5)

where 1 = | X (R)]| is the number of real places of X,
o Rx ., is a positive real number defined via a regulator map in §6.

We further conjecture that formula (4) holds for all one-dimensional arith-
metic schemes, not necessarily abelian. This is equivalent to the Tamagawa
number conjecture for non-abelian number fields (see Remark 7.4).

We give two proofs of (4): first a direct argument in §7 and then an argument
in terms of Weil-étale cohomology in §9. In fact, we note that the special
value formula is the same as the conjecture C(X,n) formulated in [3], which is
specialized to one-dimensional X and spelled out explicitly.

The purpose of this text is twofold. First, we establish a new special value
formula, which generalizes several formulas found in the literature. Second, we
review the construction of Weil-étale cohomology H zW’C(X ,Z(n)) from [2] and
the special value conjecture from [3] and explain it in the case of one-dimensional
schemes. It is not very surprising that a special value formula like (4) exists,
but the right cohomological invariants to state it have been suggested by the
Weil-étale framework.

This text was inspired in part by the work of Jordan and Poonen [19], which
deals with a formula for *(X,1), where X is an affine reduced one-dimensional
arithmetic scheme. The affine and reduced constraint does not appear in our
case because work with different invariants. Since ((X,s) = ((Xyed, s), the
“right” invariants should not distinguish between X and X,.q, and motivic
cohomology satisfies this property.

Notation and conventions
Abelian groups. For an abelian group A, we denote

AP :=Hom(A,Q/Z),
A* := Hom(A,Z).



There is an exact sequence
0 — A* = Hom(A,Q) — AP — (A40,s)? = 0 (6)

Note that for a finite rank group A, the Z-dual A* is free and has the same
rank. If A is finite, then there is a (non-canonical) isomorphism with the Q/Z-
dual A= AP and in particular |[AP| = |A].

Schemes. In this text, X always denotes a one-dimensional arithmetic
scheme, i.e., a separated scheme of finite type X — SpecZ of Krull dimension
1.

We remark that the restriction that X is abelian (Definition 1.1) is needed
only for the proofs of Theorem 1.2 in §7 and §9. Our calculations in §§3, 4, 5,
6, 8 work for any one-dimensional arithmetic scheme X.

Weights. In this text, n always stands for a fixed, strictly negative integer.

Motivic cohomology. We will work with a version of étale motivic cohomol-
ogy defined in terms of Bloch’s cycle complexes. These were introduced by
Bloch in [4] for varieties over fields, and for the version over SpecZ see [11, 12].

In short, we let A" = SpecZlto, ..., t;]/(1 — Y, ;) be the algebraic simplex.
Denote by z,(X, 1) the group freely generated by algebraic cycles Z C X x A*
of dimension n + ¢ that intersect the faces properly. For n < 0 we consider the
complex of sheaves on X

Z5(n) := zn(-, —e)[2n].
The corresponding (hyper)cohomology
H (X ¢, 75(n)) := H(RT (X ¢, Z¢(n)))

is what we will call in this text (étale) motivic cohomology. For a proper
regular arithmetic scheme X of pure dimension d we have

Z°(n) =2 Z(d — n)[2d], (7

where Z(m) is the other motivic complex that usually appears in the literature;
see [11, 12] for the definition. To avoid any confusion, all our calculations will
be in terms of Z¢(n).

By [13, Corollary 7.2], the groups H!(X¢, Z¢(n)) satisfy the localization
property: if Z C X is a closed subscheme and U = X \ Z is its closed comple-
ment, then there is a distinguished triangle

R (Zs,Z°(n)) — RT(X4,Z2°(n)) = RTU(Ug, Z°(n)) = RT(Za, Z2°(n))[1],
giving a long exact sequence

oo = HY (Z e, 2°(n)) — H (X, Z°(n)) — H' (Ug, Z6(n)) —
H™"N(Za, Z°(n)) = -+ (8)



This means that H*(—,Z¢(n)) behaves like (motivic) Borel-Moore homology.
At the level of zeta functions, the localization property corresponds to the
identity
C(X’ 3) = C(Zv S) C(U7 5)'

For more results on Z¢(n), we refer the reader to [13].

In general, the groups H®(X4,Z¢(n)) are very hard to compute. However,
they are quite well understood for one-dimensional arithmetic schemes X; see
85 below.

Outline of the paper

In §2 we prove a dévissage lemma that shows how a property that holds for
curves over finite fields and for number rings can be generalized to any one-
dimensional arithmetic scheme. It is an elementary argument, isolated to avoid
repeating the same reasoning in several proofs.

In §3 we calculate the vanishing order of ((X,s) at s =n < 0. Then in §4
we calculate the Gr-equivariant cohomology groups of the finite discrete space
of complex points X (C). In §5 we put together various well-known results to
describe the motivic cohomology groups H®(Xg, Z%(n)). In §6 we define the
regulator that appears in the special value formula.

Our first “elementary” proof of the main result is given in §7. Then §8 is de-
voted to a calculation of the Weil-étale cohomology groups Hyy, (X, Z(n)) from
[2] for one-dimensional X, which we consider an interesting result on its own.
We use these calculations in §9 to formulate explicitly the conjecture C(X,n)
from [3], again for one-dimensional X. This is a second, more conceptual proof
of the main result, and it explains how we arrived at (4) in the first place.

Finally, we conclude in §10 with a couple of examples showing how our
special value formula works.
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2 Dévissage lemma for one-dimensional schemes

The main idea of this paper is to consider a property that holds for spectra
of number rings X = Spec Op and curves over finite fields X/F,, and then
generalize it formally to any one-dimensional arithmetic scheme. To this end,
in this section we isolate a dévissage argument which will be used repeatedly in
the rest of the paper.

LEMMA 2.1. Let P be a property of arithmetic schemes of Krull dimension < 1.
Suppose that it satisfies the following compatibilities.

a) P(X) holds if and only if P(X,eq) holds.



b) If X =11, X; is a finite disjoint union, then P(X) is equivalent to the
congunction of P(X;) for all i.

¢) If U C X is a dense open subscheme, then P(X) is equivalent to P(U).
Suppose that

0) P(SpecF,) holds for any finite field F,,

1) P(X) holds for any smooth curve X/F,

2) P(Spec O) holds for any number field F/Q.
Then P(X) holds for any one-dimensional arithmetic scheme X.

Proof. First suppose that dim X = 0. Then, thanks to a), we can assume that
X is reduced, and then X = [, SpecF,; is a finite disjoint union of spectra of
finite fields such that P(X) holds thanks to 0) and b).

Now consider the case of dim X = 1. Again, we can assume that X is
reduced. We take the normalization v: X’ — X. This is a birational morphism:

there are dense open subschemes U C X and U’ C X’ such that v|,, : U’ U
is an isomorphism. Thanks to c), we have

P(X) <= PU) — PU) = PX).

Therefore, we can assume that X is regular. Now X =[], X; is a finite disjoint
union of normal integral schemes, so thanks to b), we can assume that X is
integral. There are two cases.

o If X — SpecZ lives over a closed point, then it is a smooth curve over F,,
and the claim holds thanks to 1).

e If X — SpecZ is a dominant morphism, consider an open affine neigh-
borhood of the generic point U C X. Again, P(X) is equivalent to P(U),
so it suffices to prove the claim for U. We have U = SpecOp g for a
number field F/Q and a finite set of places S, so everything reduces to
P(Spec OF). O

3 Vanishing order of ((X,s) at s=n <0

DEFINITION 3.1 (Numbers 7, and ry). Given a one-dimensional arithmetic
scheme X, consider the finite discrete space of complex points

X (C) := Hom(SpecC, X).

There is a canonical action of the complex conjugation Ggr := Gal(C/R) on
X(C). The fixed points of this action correspond to the real points X (R), also
known as the real places. We set r; = | X(R)|. The non-real places are called
complex places. They come in conjugate pairs, and we denote their number
by 27“2.



r1 points 21y points
Figure 1: G := Gal(C/R) acting on X(C)

Equivalently, for a number field F/Q, denote by r1(F) the number of real
embeddings F' < R and by ro(F') the number of pairs of complex embeddings
F — C. Then r1(F) = r1 and ro(F) = ry for X = Spec Op. In general, for a
one-dimensional arithmetic scheme X, we have

= S k().

char k(n)=0

= S0 ra(k(n),

char k(n)=0

where the sums are over generic points n € X with residue field x(n) of charac-
teristic 0.

ProOPOSITION 3.2. Let X be a one-dimensional arithmetic scheme with r1 real
and 2ry complex places. For n < 0, the vanishing order of ((X,s) at s = n is
given by

1 +1re, n even,

dy, = ords—p, (X, s) = { (9)

r9, n odd.

Proof. For X = Spec Op the claim is a well-known consequence of the functional
equation for the Dedekind zeta function [34, §VIL5]. It also holds for X/F, since
in this case ((X, s) has no zeros or poles at s = n < 0 according to [22, pp. 26—
27]. We now proceed using Lemma 2.1.

We have ((X,s) = ((Xyeq, s) and 71 2(X) = 112(Xpeq). If X =[], X; is a
finite disjoint union, then

ords—, ((X,s) = Z ordg—pn ((X;, s),
r1,2(X) = Zh,z(Xi),

so that the property is compatible with disjoint unions. Finally, if U C X is a
dense open subscheme, then Z = X \ U is a zero-dimensional scheme, and

ordg—, C(X, 5) = ords—p C(Uv 5)7
r1,2(X) =11 2(0),



so that the property is compatible with taking dense open subschemes. We
conclude that Lemma 2.1 applies. O

4 (Ggr-equivariant cohomology of X (C)

Viewing Z(n) := (2mi)"Z as a constant Gg-equivariant sheaf on X (C), we
consider the Ggr-equivariant cohomology groups (resp. Tate cohomology)

H(Gz, X(C), Z(n)) := H'(RT(Ga, RT(X(C), Z(n)) )
Hi(Gr, X(C), Z(n)) := H' (T (Gr, RT(X(C), Z(n))) )

Of course, X(C) is just a finite discrete space, so it is not necessary to use
cohomology with compact support, but we use this notation for consistency
with the general case considered in [2]. Since dim X (C) = 0, we have

H(Gw, X (C),Z(n)) = H'(Gg, HY(X(C), Z(n))),
Hi(Gr, X(C),Z(n)) = H (G, H) (X (C), Z(n))).

PROPOSITION 4.1. Let X be a one-dimensional arithmetic scheme with r1 real
places. Then the Gr-equivariant cohomology of X (C) is

~ o ) (Z)22)%, i=n(2),

H(Gr, X(C), 2(n)) = {07 iin () (10)
0, 1 <0,

H!(Gr, X(C),Z(n)) = { 78, i=0, (11)

Hi(Gg,X(C),Z(n)), i>1.
Here d,, is the vanishing order given by (9).
Proof. We have
H(X(C),Z(n)) = Z(n)*™ @ (Z(n) & Z(n))*",

and the Gg-action on the two summands is given by « +— T and (z,y) — (7,7),
respectively. (See Figure (1).)
We recall that the Tate cohomology of a finite cyclic group is 2-periodic:

Erz(G’ A) o }:IO(GvA)? 7’ even,
Hy(G,A), iodd,
and the groups ﬁO(G, A) and ﬁO(G, A) are given by the exact sequence
0 — Ho(G, A) = Ag =5 A% = HY(G, A) = 0

where N is the norm map induced by the action of > gec 9

Therefore, we can consider two cases.



1) Ggr-module A = Z(n) with the action via z — .

In this case, we see that

4G ~ Z, n even,
10, nodd.

Similarly, it is straightforward to calculate the coinvariants Ag,, and

~ Z/2Z, neven, -~ 0 n even
H°(Gg, A) = ’ " Ho(Gp,A) =< ’
(Gr, A) {0, n odd, o(CGr, 4) {2/22, n odd.

2) Gr-module A =Z(n) ® Z(n) with the action via (z,y) — (7,T).
In this case A%® = Z and H(Gg, A) = Ho(Gg, A) = 0.

Combining these two calculations, we obtain Tate cohomology groups (10).
For the usual cohomology (11), we have

Hy(Gr, X(C), Z(n)) = HY(X(C), Z(n))“*,

c

H!(Ggr, X(C),Z(n)) = H(Gg, X(C),Z(n)) fori> 1. O

5 Etale motivic cohomology of one-dimensional
schemes

In this section we review the structure of the étale motivic cohomology H*(X ¢, Z¢(n))
for one-dimensional X and n < 0. What follows is fairly well-known, so we claim

no originality here, but we compile the references and state the result for a gen-

eral one-dimensional arithmetic scheme.

ProprosITION 5.1. If X is a one-dimensional arithmetic scheme and n < 0,
then

0, i< —1,
finitely generated of vk d,,, = —1,
H'(X 4, Z°(n)) & { finite, i=0,1, (12)
(Z)22)®™ i>2 i#n (2),
0, i>2, i=n (2).

Here d,, is given by (9) and r1 = |X(R)| is the number of real places of X.
Further, if X = Spec O for a number field F/Q, then

(Z)2Z)%™, n even,

13
0, n odd. (13)

H' (X a,2°(n)) = {

10



An important ingredient of our proof is the arithmetic duality [2, Theorem I],
which states that if H*(Xg,Z(n)) are finitely generated groups for all i € Z,
then N _

H(Xe, Z(n)) = H* (X g, Z°(n)) ", (14)

where

Z(n) :== Q/Z(n EBngp'uff’" 1. (15)

Here H (X ¢, Z(n)) is the modified cohomology with compact support, for which
we refer to [15, §2] and [2, Appendix B]. In particular,

Hi(X ey Z(n) = Hi(Xa, Z(n)) i X(R) = 2.

We recall that (—)P denotes the group Hom(—,Q/Z). We note that (14) is a
powerful result, deduced in [2] from the work of Geisser [13].

Proof of Proposition 5.1. We use Lemma 2.1. We will say that P(X) holds if
the motivic cohomology of X has the structure (12).

Let us first consider the case of a finite field X = SpecF,. We have

Z/(qg" = 1), i=1,

0, i# 1. (16)

Hi(Spec Fy e, Z°(n)) = {

—see, for example, [14, Example 4.2]. This is related to Quillen’s calculation of
the K-theory of finite fields [35].

In general, if X is a zero-dimensional arithmetic scheme, then the motivic
cohomology of X and X,.q4 coincide, so we can assume that X is reduced. Then
X is a finite disjoint union of X; = SpeclF,,, and

Hi(X, Zc(n)) _ {gnite, i ; 1, (17)

In particular, P(X) holds if dim X = 0.

Now we check the compatibility properties for P. If X =[], X; is
a finite disjoint union, then H®(X4,Z%(n)) = @, H (X, &, Z¢(n)), hence the
property P is compatible with disjoint unions.

Similarly, if U C X is a dense open subscheme, and Z = X \ U its closed
complement, then dim Z = 0. We consider the long exact sequence (8). Since

the cohomology of Z is concentrated in i = 1, we have H'(Xg,Z%(n)) =
Hi(Ug,Z%(n)) for i # 0,1, and what is left is an exact sequence

0 — H%(X4,Z°(n)) — H°(Ugt, Z°(n)) —
HY(Ze,2°(n)) — H (X a1, Z°(n)) — H (Ug, Z°(n)) — 0

11



Moreover, d,,(X) = d,,(U). These considerations show that P(X) and P(U) are
equivalent, and therefore Lemma 2.1 works, and it remains to establish P(X)
for a curve X/F, or X = Spec Op.

Suppose that X/F, is a smooth curve. The groups H'(X 4, Z¢(n)) are
finitely generated by [14, Proposition 4.3], so that the duality (14) holds. The
Q/Z-dual groups

H (X, Z @H (Xeat, Qe/Ze(n))

are finite by [20, Theorem 3], and concentrated in i = 1,2,3 for dimension
reasons. It follows that H*(X ¢, Z¢(n)) in this case are finite groups concentrated
ini=-1,0,1, and the property P(X) holds.

It remains to consider the case of X = SpecOp. In this case, the
finite generation of H*(X ¢, Z¢(n)) is also known; see, for example, [14, Proposi-
tion 4.14]. Therefore, the duality (14) holds. We have H’(Spec Op[1/p), pg™) =
0 for i > 3 by Artin—Verdier duality [32, Chapter II, Corollary 3.3], or by [37,
p.268]. Therefore, it follows that Hi(X,Z(n)) = 0 for i > 4, and hence by
duality (14), H (X4, Z¢(n)) = 0 for i < —2.

Now we identify the finite 2-torsion in H®(Xg,Z%(n)) for i > 2. By [8,
Lemma 6.14], there is an exact sequence

— H™Y(X4,Z(n)) — H™(Gg, X(C), Z(n)) —
H (X 4,7(n)) —» H(X &, Z(n)) — -~ (18)

For i < 0 we have H:(X4,Z(n)) = 0, and therefore

(Z)2z)®™, i#
0, 1=

Hi(Xa,Z(n)) = H ' (Gr, X(C), Z(n)) = { . g;

By duality, for ¢ > 2 we have

- 7./27,)% |

H (X, Z5(m) = {( 7

O, 1=

Now we determine the ranks of H*(X4,Z%(n)) for i = —1,0,1. By [26,
Proposition 2.1] the Chern character for i = —1,0

K_gn_i(X) — Hi(Xétv Zc(n))

has a finite 2-torsion kernel and cokernel. (Originally, the target group is defined
over X 74, and we identify it with the cohomology on X using the Beilinson—
Lichtenbaum conjecture, which is now a theorem [11, Theorem 1.2]. We further
use the isomorphism (7) to identify our motivic cohomology with the one used
in [26].)

12



For i = —1,0 we have therefore
rkz H' (X, 2°(n)) = rkg K_5n—i(X).

Together with Borel’s calculation of the ranks of K,,(Op) in [5], this implies
that H%(X g, Z¢(n)) is a finite group, while

vk H_l(XéhZc(’l’L)) =d, = T+ T2, N even,
T2, n odd.

Finally, by [26, p.179] and (7), we have

(Z)27)®™ | n even,

HY (X4, 7° o
(X Z°(n)) {0, - odd

This concludes the proof. O

6 Regulator for one-dimensional X

Now we explain what is meant by the regulator in our situation.

DEFINITION 6.1. We let the regulator morphism be the composition

oxn: H ' (Xe, 26(n)) 2222 HY(X 4, Z6(n)) © R
SO 1Y (G, X (C),R(n)),
where the map Regx,, is defined in [3, §2].

The target is the Borel-Moore cohomology defined by
H%,/(Ggr, X(C),R(n)) := Hom(H?(Gr, X(C),R(n)), R).

In general, the regulator takes values in Deligne—Beilinson cohomology, but the
target simplifies in the case of n < 0, as explained in [3, §2].

REMARK 6.2. The only relevant group for the regulator is H (X4, Z%(n)),
since the cohomology in other degrees is finite by Proposition 5.1.

The general definition in [3, §2] is based on the construction of Kerr, Lewis
and Miiller-Stach [23] which works at the level of complexes. This is not very
important in the one-dimensional case, where the interesting cohomology is
concentrated in ¢ = —1. The reader can use any other equivalent construction
of the regulator for motivic cohomology.

REMARK 6.3. If X = Spec Op, then px , can be identified with the Beilinson

regulator map that appears in the special value conjecture of Flach and Morin
in [8, §5.8.3].

13



LEMMA 6.4. For any one-dimensional arithmetic scheme X and n < 0, the
R-dual to the requlator

Regx ,: H(Gr, X (C),R(n)) — Hom(H ' (X, Z°(n)),R)
s an isomorphism.

Proof. If X/F,, then the claim is trivial. For X = SpecOp, this is a well-
known property of the Beilinson regulator. To apply Lemma 2.1, we need to
check compatibility with disjoint unions and passing to a dense open subscheme
U C X. For disjoint unions, this is clear. For a dense open subscheme U C X,
the closed complement Z = X \ U has dimension 0, and the localization exact
sequence (8) with the long exact sequence for cohomology with compact support
yields integral isomorphisms

H Y (X e, 2°(n)) = H Y (Ua, Z°(n)),
HY(Gg, U(C), Z(n)) = HY(Gz, Z(C), Z(n)).
We now have a commutative diagram

Reg[vjyn

HY(Gr, U(C),R(n)) Hom(H ™! (Ue, Z°(n)), R)

| |

HO(Gr, X(C), R(n)) % Hom(H-1 (X s, Z¢(n)), R)

The upper arrow is an isomorphism if and only if the lower arrow is. O

DEFINITION 6.5. For a one-dimensional arithmetic scheme X, we define the
regulator to be

Rx = V01<coker(H*1(Xét,Zc(n)) 2xn, H%M(GR,X((C),R(n)))),

where the volume is taken with respect to the canonical integral structure.

If X(C) =@, or nis odd and 75 = 0, then H%,,(Gr, X(C),R(n)) = 0, and
we set Rx p, = 1.

LEMMA 6.6. Let X be a one-dimensional arithmetic scheme and n < 0. For
any dense open subscheme U C X, we have Rx , = Ryn,.-

Proof. Follows from the proof of Lemma 6.4. O

PROPOSITION 6.7. Given a one-dimensional arithmetic scheme X and n < 0,
consider the two-term acyclic complex of real vector spaces

RegX .,

C*: 0 — H°(Gg, X(C),R(n)) — Hom(H (X4, Z(n)),R) — 0

deg 0 deg1

14



Then taking the determinant detg(C®) in the sense of Knudsen and Mumford
[24], the image of the canonical map

detz H)(Gr, X (C),Z(n)) ®z detz Hom(H (X ¢, Z(n)),Z) "+ —

detg H?(Gg, X(C),R(n)) @ detg Hom(H (X4, Z¢(n)),R)"* = R

L®

corresponds to Rx , Z C R.

Proof. In general, if F' and F’ are free groups of finite rank d, and
C*: 05 FzRS F @R —0
is a two-term acyclic complex of real vector spaces, then the image of
Z = dety, F&y(dety F') ™" — detp (F®zR)@gdety (F'@zR) ™" = detg (C*) = R

corresponds to DZ C R, where D is the determinant of ¢ with respect to the
bases induced by Z-bases of F' and F”. This follows from the explicit description

of the isomorphism detg(C*®) = R from [24, p.33]: it is

)71 dCt]R(qﬁ

detR(F®ZR) ®]Rdet]R(F/®ZR ) detR(F’®ZR)®RdetR(F’®Z]R)*1 i} R

where the last arrow is the canonical pairing.
Therefore, in our situation, the image of

detz HY(Gr, X(C), Z(n)) ®z detz Hom(H (X ¢, Z¢(n)), Z)

is DZ C R, where D is the determinant of Regy , considered with respect to the
bases induced by Z-bases of H(Gg, X (C),Z(n)) and Hom(H ~(X g, Z¢(n)), Z).
Dually, D = Rx . O

7 Direct proof of the special value formula

In this section we explain how to prove our special value formula directly by
combining the known special value formulas for X = Spec O and curves over
finite fields X/F, via localization.

LEMMA 7.1. Letn < 0.

0) If X is a zero-dimensional arithmetic scheme, then

1

C(Xm):im'

1) If X/F, is a curve over a finite field, then

|H® (X e, Z¢(n))|

M) = X, Ze ) T (Xao 2G|

15



2) If X = Spec Op for an abelian number field F/Q, then

|HO(X e, Z(n))|
|H= 1 (Xet, 29(n)))|

¢(X,n)=+ Rx p.

In particular, formula (4) holds in these cases.

Proof. In part 0), motivic cohomology and the zeta function do not distinguish
between X and X,.4, so we can assume that X is a finite disjoint union of
SpecFy,. Thanks to (16),

1 1 1
¢«x,n) =11 1—q " il:[ |HY (X, e, Z¢(n))| iIILP(XénZC(n))\'

i

Note that this is formula (4) since § = 0 in this case and H (X, Z%(n)) =
H°(X4,7¢(n)) =0 by (16).

For part 1), we refer the reader to [3, §5]. Part 2) follows from [8, Propo-
sition 5.35]. The formula is equivalent to (4), since 2° = |H' (X4, Z(n))| by
(13). O

REMARK 7.2. The special value at s = 0 is not necessarily a rational number:

s 1
*(SpecF,,0) = li = .
¢*(Specky,0) ey 1—q= loggq

Moreover,
Z, i=1,
H'(SpecFy ¢, 2°(0)) = § Q/Z, i=2,
0, i#1,2.

This toy example already shows that it is important that we focus on the case
of n < 0.

LEMMA 7.3. Let X be a one-dimensional arithmetic scheme and let U C X be
a dense open subscheme. Then the special value formula (4) for X is equivalent
to the corresponding formula for U.

Proof. Let Z = X \ U be the zero-dimensional complement. We have
((X,n) = ((U,n) ((Z,n),

where
7 o6 |HO(X ¢, Z¢(n)|
CXom) = A T R e 2o o] [ X 2] 1)
o s HO (U, 2 ()
(O = A A G 2o oo [ Oz L 20
R P —

|HY(Zer, Z(n)) |
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Here 6 = 6xn = dun, and R = Rx,, = Ry, (see Lemma 6.6). We note that
|H=Y (X 6t, Z¢(n))tors| = |H (Ugt, Z°(0))tors|. On the other hand, the exact
sequence of finite groups

0 — H°(X4,Z(n)) — H*(Ug, Z(n)) —
HY(Zs,7(n)) — HY (X ¢, Z°(n)) — H (Ug, Z°(n)) — 0 (21)

gives
|H(X e, 26(n))| _ |HO(Uer, 2(n))| 1
|H' (Xa, 2¢(n))| [H' (U, Z(n))| - [H (Zear, Z(n))|
From this we see that (19) and (20) are equivalent. O

The above Lemmas 7.1 and 7.3 together with Lemma 2.1 now prove Theo-
rem 1.2 from the introduction.

REMARK 7.4. Our proof of Lemma 7.1 uses [8, Proposition 5.35], which in turn
reduces to the Tamagawa number conjecture for abelian F//Q. The non-abelian

version of Theorem 1.2 is therefore equivalent to the corresponding conjecture
for non-abelian F/Q.

REMARK 7.5. Note that ((SpecF,,n) = ﬁ < 0. Thus, if we remove m
closed points from X, the sign of (*(X,n) changes by (—1)™. It is not hard to
figure out the sign in any concrete example; however, it is not so clear in what
terms to write the general expression for the sign.

8 Weil-étale cohomology of one-dimensional arith-
metic schemes

In this section we calculate Weil-étale cohomology groups HYy (X, Z(n)) for
n < 0, as defined in [2]. Let us briefly recall the construction. In general,
let X be an arithmetic scheme with finitely generated motivic cohomology
H(X¢,7¢(n)). The construction is carried out in two steps.

e Step 1. Consider the morphism in the derived category D(Z)
Qax on: RHom(RF(Xéta ZC(”)): Q[_Q]) — RFC(Xét7 Z(n))

determined at the level of cohomology, using the arithmetic duality (14),
by

i 2—i ¢ Q>Q/Z 170 c(\\D

H'(ax p): Hom(H*"Y(Xg,Z°(n)), Q) —— H " (Xe, Z°(n))

),
& HYXa,Z(n) = HY(Xa, Z(n). (22)
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The complex Ry, (X,Z(n)) is defined as a cone of ax p:
RHom(RT (X e, 2°(n)), Q[=2]) = RTe(Xer, Z(n))
— RT'4y(X &, Z(n)) — RHom(RIT (X ¢, Z°(n)), Q[—1])

The groups , ,
Hy(X, Z(n)) := H'(RT'ty(X, Z(n)))

are finitely generated for all i € Z, vanish for ¢ < 0, and finite 2-torsion
for i > 0. For the details we refer to [2, §5].

e Step 2. We consider a canonical morphism 4%, in the derived category
D(Z) which is torsion and yields a commutative diagram

RTo(Xet, Z(n)) ——— RT5,(X, Z(n))
RTW(Gw, X(C), Z(n))

—see [2, §86,7] for more details. Weil-étale cohomology with compact
support is defined as a mapping fiber of 7%_:

RTw.o(X,Z(n)) — RT4,(X,Z(n)) = RT.(Gg, X(C), Z(n)) — [1]
The resulting groups
Hiy (X, Z(n)) := H'(RL w,o(X, Z(n)))

are finitely generated and vanish for ¢ ¢ [0,2dim X + 1]. We refer to |2,
§7] for the general properties.

Here we calculate HYy, (X, Z(n)) for one-dimensional X.

PROPOSITION 8.1. Let X be a one-dimensional arithmetic scheme and n < 0.
0) Hy, (X, Z(n)) =0 fori#1,2,3.
1) There is a short exact sequence

0 — H)(Gr, X(C),Z(n)) = Hyy (X, Z(n)) = T1 — 0 (23)

7 ®dn

in which Ty sits in a short exact sequence of finite groups
0 — HY(Gg, X(C),Z(n)) — H' (X e, Z°(n))P = Ty — 0
In particular, H%MC(X,Z(n)) is finitely generated of rank d,, and
1
ITh] = 55 - [H' (Xet, 2°(n)],

where § is defined by (5).
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2) There is an isomorphism of finitely generated groups

Hiy (X, Z(n)) = H (X4, Z°(n))* ® H* (X &, 2°(n))"”

~7®dn finite

3) There is an isomorphism of finite groups

H?/V,C(X7 Z(?’L)) = (H_l(Xéb ZC(”))tors)D

We recall that AP := Hom(A4,Q/Z) and A* := Hom(A,Z).

Proof. From the definition of RI';(X,Z(n)) we have a long exact sequence

s Hom(H?~(X 4, Z5(n)), Q) 25 13X 1, Z(n))
— Hj,(X,Z(n)) - Hom(H' ™" (X&,Z°(n)),Q) — --- (24
Our calculations of motivic cohomology in Proposition 5.1 give
Hom(H'(X &, 2°(n)),Q) =0 for i # —1,
and further by the definition of Z(n) in (15),
H!(Xa,Z(n)) =0 fori<O0.

This implies that H}Q(X, Z(n)) =0 for i < 0. Since H!(Gg, X(C),Z(n)) = 0 for
1 < 0, we see from the exact sequence

H),

= Hyy (X, Z(n)) — Hpy(X, Z(n)) —= Hi(Gr, X(C), Z(n))

S HELXZ() - - (25)
that H{y, (X, Z(n)) =0 for i <0.

For i = 1, the exact sequence (24) shows that H}(X ¢, Z(n)) — H;g(Xét7 Z(n))
is an isomorphism. Consequently, we see that ker H'(i*_) = ker H' (u%,):

HY(X e, Z(n)) —— H}(X,Z(n))

H (ur, )l %

H; (Gr, X(C),Z(n
From long exact sequences (25) and (18), we obtain short exact sequences

0 — H?(Ggr, X(C),Z(n)) — H%V’C(X,Z(n)) — ker H'(i*,) — 0

0 — H%(Gg, X(C),Z(n)) — HY(Xe, Z(n)) — ker H*(uz,) — 0
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Since ker H*(i*_) = ker H*(u?_), this is part 1) of the proposition.

We proceed to compute Hyy, (X, Z(n)) for i > 2. Tt is more convenient to do
this without passing explicitly through H}g(X ,Z(n)). Consider the morphism

of complexes
dx.n: RHom(RT (X &, Z%(n)),Q[—2]) — RL(Xe&, Z(n)),

defined in the same way as ax , in (22), only without the final projection from
Hito H::
(n))”

Q—~»Q/z H2_i(Xét,Zc
& Hi(Xa, Z(n)).

H'(@x,n): Hom(H* (X 4,Z(n)),Q)

The relation between @x , and ax y is given by

RHom(RT(X ¢, Z¢(n)), Q[-2]) ~X" RT.(X e, Z(n))

RT (X, Z(n))

ax n

Here the vertical arrow comes from the definition of modified étale cohomology

with compact support and it sits in an exact triangle
RU.(X e, Z(n)) — RUo(X g1, Z(n)) —= RT (G, X (C),Z(n)) — ---[1]

—see [8, Lemma 6.14]. From the definition of @x , and the exact sequence (6),

we calculate
ker H (Gxn) = H* (X e, Z°(n))",

coker Hi(axm) = (Hzfi(Xét, Zc(n))tOTS)D

We denote a cone of ax , by Rffg(X7 Z(n)) and set

so that there is a long exact sequence

e HOm(H27i(Xét7 Zc(ﬂ)), Q) Hi(aX.,n)
Hi(X 4, Z(n)) — HE (X, Z(n)) — Hom(H'™(X 4, Z°(n)), Q) — - --

The corresponding short exact sequences
0 — coker H(Gx,n) = Hj,(X,Z(n)) — ker H+(Gx ) — 0
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are split, since ker H**!(ax ,,) is a free group. Therefore, we have
Hj (X, Z(n)) = H'™ (Xa, 2°(n)" @ (H* ™ (Xa, Z°(n) ) 10rs)

There is a commutative diagram with distinguished rows and columns

RHom(RI'(X ¢, Z°(n)), Q[—2]) &) RfC(Xét,Z(n)) e Rffg(X,Z(n)) — [+1]

| |

RHom(RT'(X 4, Z°(n)), Q[—2]) m RT(X¢t, Z(n)) — RTp(X,Z(n)) — [+1]

~% Tk
J/uoo J/Zoo

0 — 3 RP.(Gg, X(C),Z(n)) % RT.(Gg, X(C),Z(n)) — 0

| !

RHom(RT(X a0, 2°(m)), Q[—1]) “ N RE. (X, Zn)) 1] —— RE (X, Z)1] —> (42

o~

Here u*_ (resp. i%) is defined as the composition of the canonical morphism

ul, (resp. i% ) with the projection to the Tate cohomology
7 RT(Gg, X(C),Z(n)) — RT.(Gg, X(C), Z(n)).

In our case of one-dimensional X, we know that H(r) is an isomorphism for
i > 1 (cf. [2, Proposition 3.2]). Therefore, the five-lemma applied to

*

RTw o(X,Z(n)) — RTp(X,Z(n)) Z;'o> RI'¢(Ggr, X(C),Z(n)) —— ---[1]

I I |7 [
RE (X, 2(n)) — RI(X,Zn) —= ARe(Ga X(€),Z(n)) — (1
shows that for 7 > 2 holds
W,o(X, Z(n) = Hjy (X, Z(n)) = H' ™ (X e, 2°(n))* & (H* ™ (X, Z°(1))10rs)
Our calculations of motivic cohomology in Proposition 5.1 yield
Hiy (X, Z(n) = B (X, 2°(n))" ® H(X 1, Z°(n))P,
Hiy, (X, Z(n)) 2= (H' (X, Z(n)) tors) 7
w,o(X,Z(n)) =0 for i > 4. O

REMARK 8.2. A priori, the short exact sequence (23) need not split. This will
not bother us for the determinant calculations in §9 below.

REMARK 8.3. The groups H@V}C(X,Z(n)) for X = Spec Of are already calcu-
lated in [8, §5.8.3]. The result is (using the identification (7))

VAL i=1,
, H Y (Xg,Z°(n))* @ H'(X g, Z(n))P, i=2
b (X, Z(n)) = ’ ’ ’ ’ 26
W’C( (n)) (H_l(XéhZC(n))tors)Da 1= 3a ( )
0, i#£1,2,3.
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Our calculation generalizes this. What may look puzzling is the answer for
H%/V,C(X,Z(n)) given by Proposition 8.1. In the case of X = Spec O we have,
according to (13), that HY(X,Z(n)) = (Z/2Z)®™ for even n, and hence
Ty = 0, which agrees with (26).

Intuitively, the arithmetically interesting cohomology H*(X g, Z¢(n)) for X =
Spec OF is concentrated in degrees i = —1,0. The groups H*(X g, Z(n)) for
i > 1 do not contain any interesting information: they are finite 2-torsion,
coming from the real places of F. The transition to Weil-étale cohomology
eliminates this 2-torsion. On the other hand, the group H'(Xg;,Z(n)) for a
curve over a finite field X/Fy is nontrivial and contains arithmetic information.
The finite group 7 appearing in the statement removes the 2-torsion coming
from the real places of X.

REMARK 8.4. For a curve over a finite field X/F,, all groups H*(Xg,Z(n))
are finite, and our calculation gives Hiy, (X, Z(n)) = H>*~"(X g, Z¢(n))P. This
is true for any variety over a finite field X/F, and n < 0, under the assumption
of finite generation of H*(X ¢, Z%(n)); see [2, Proposition 7.7].

REMARK 8.5. It is conjectured in [3, §3] that
orde—, (X, 8) = > (=1)"-i-rkg Hiy (X, Z(n)).
i€l
In this case

rkz Hyy (X, Z(n)) = tkz Hyy (X, Z(n)) = dn,
rkz Hyy (X, Z(n)) =0,

so the conjecture holds by Proposition 3.2.

9 Weil-étale proof of the special value formula

Now we explicitly write down the special value conjecture C(X,n) from [3, §4].
To do this, consider the canonical isomorphism

o

AR S R)(detr Hiy (X, R(n))) D'
i€ZL
2 (@ ety Hiy, (X, 2n) ') @2 B
1EL
=5 (detz RT w.o(X, Z(n))) @z R,

where the first isomorphism R 2 )
the regulator, as explained below.

iez(detr Hyy (X, R(n)))D" comes from
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In our case, we are interested in the determinant of the Weil-étale complex

dety, RFVV,,;(AXV7 Z(n)) = ® dety Hzi/V,c<X? Z(n))(—l)z
i€EZ
= detz Hyy (X, Z(n)) " ®z detz Hyy (X, Z(n)) ®z detz Hyy, (X, Z(n)) ™"

Using the calculations from Proposition 8.1,

detz Hyy (X, Z(n)) = detz HY (Gr, X(C), Z(n)) @z detz T1,
dety, H%/V,c(X’ Z(n)) ~ dety H_l(Xét, Zc(n))* ®7 dety, HO(Xét, Zc(n))D,
detz HYy (X, Z(n)) = detz(H ' (X &, Z°(n) ) ors) "

So we have an isomorphism (up to sign +1, after rearranging the terms)

detz RFW,C(X, Z(n)) =
= dety H(Gg, X(C),Z(n)) ! ®z detz H (X &, Z°(n))*®z
detz(T1) ™" @z dety HO(X e, Z°(n))P @z detz (H ™ (X, Z°(n) ) 1ors) ) 71
Recall that 71, H(X ¢, Z¢(n))P, (H™Y (X g1, Z6(n)) tors) P are finite groups, while

the groups H?(Ggr, X (C),Z(n)) and H (X4, Z¢(n))* are free of rank d,,. Now
we consider the canonical trivialization

(detz RT w,o(X,Z(n))) @z R = Q) detp(Hiy, (X, Z(n)) @z R) = R
€L

via the regulator morphism

HY(Gr, X(C),Z(n)) ® R Hom(H (X g, Z¢(n)),Z) ® R

~ |

HY(Gr, X(C), R(n)) — 2"y Hom(H(Xe,Z°(n), R)

o

PROPOSITION 9.1. Under the above trivialization, detz RT'w (X,Z(n)) C R
corresponds to a~' Z C R, where

_ |HO(X o1, 7°(n))"| -
T3] [(H (X e, Z2(n))sors)P] — "

|H (X e, Z¢(n))|
[H=(X a1, 2°(0) ) tors| - [H (X a2, 2°(n))|

(%

— 90

RX,rw

the number ¢ is given by (5), and Rx y, is the regulator from Definition 6.5.

Proof. For the finite groups Ty, H°(X &, Z¢(n))P, (H™Y (X &1, Z°(n)) tors) ¥, this
is [3, Lemma A.5]. For the free groups H? (G, X (C),Z(n)) and H =1 (X 4, Z¢(n))*,
on the other hand, this is Proposition 6.7 (now our groups sit in degrees 1 and
2, so the determinant gets inverted). O
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We recall that Conjecture C(X,n) from [3, §4] states that the canonical
embedding detz RT'w,.(X,Z(n)) C R corresponds to ¢*(X,n)"'Z C R.

PROPOSITION 9.2. Let X be a one-dimensional arithmetic scheme and n < 0.
Then the special value conjecture C(X,n) stated in [3] is equivalent to formula

(4).

In [3, §7] it is already proved (using essentially the same localization idea as
in this text) that C(X,n) holds unconditionally for an abelian one-dimensional
arithmetic scheme X. Together with the proposition above, this proves Theo-
rem 1.2 from the introduction.

10 A couple of examples

We conclude with two examples that illustrate how localization arguments work.
The first is rather general and consists in specifying §7 to the case of a non-
maximal order in a number field.

EXAMPLE 10.1. Let O C Op be a non-maximal order in a number field F/Q.
Denote X = SpecO and X' = SpecOp. Geometrically, v: X' — X is the
normalization. There exist open dense subschemes U C X and U’ C X’ such
that v induces an isomorphism U’ = U. If we denote the corresponding closed
complements by Z = X \ U and Z' = X'\ U’ then we have

¢(Z,s)
¢(Z',5)

For this identity formulated in classical terms of algebraic number theory, see,
for example, [18]. In particular,

Co(s) = Cr(s).

2 )
CO( ) |H1( et;Zc(n))| F( )

Now our special value conjectures for (5, (n) and (j.(n) take the form

2 s I Z o)
Colm) =+ i, <>>fm\ Xz @
T g |H0< 1 7))
) = e Ze e I Kz

Here |H ™Y (X s, Z(n)) tors| = [H (X, Z°(n)) tors|, and the exact sequences of
finite groups

0 — H°(X 4, Z°(n)) — H(Ugy, Z6(n)) —
HY(Zs,7°(n)) — H (X g, Z°(n)) — H*(Ug, Z°(n)) — 0
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0 — H°(XY,Z¢(n)) — H°(UL,, Z°(n)) —

étr étr

HY(Z.,,7°(n)) — H (X, Z°(n)) — H (UL, Z°(n)) — 0

éty étr

give us

|H (Z, 2(n))| _ [H'(X, 2°(n)| | |HO(Xer, 26(n))]
|H' (Ze, Z6(n))| - [H'(Xa, Z°(n))| [HO(X(y, Z9(n))|”
which implies that the formulas (27) and (28) are equivalent.
The second example is suggested by [19, §7].

ExAMPLE 10.2. Let p be an odd prime. Consider the affine scheme

X = Spec(Z[1/2] xr, F,[t]) = Spec Z[1/2] o U A]%-p

peclF,

obtained from SpecZ[1/p] and A%Fp = SpecF,[t] by gluing together the points
corresponding to the prime ideals (p) C Z[1/2] and (t) C F,[t]:

Z[1/2] xx, Fpt] = {(a, f) € Z[1/2] x Fp[t] | a = f(0) (mod p)}.

If we take odd n < 0, then there is no regulator. Let us consider n = —3.
First, recall some calculations of the motivic cohomology of SpecZ. Using
[26, Proposition 2.1] and known calculations of the K-groups of Z (see Weibel’s
survey [38]), we get
H™'(SpecZg, 2°(—3)) = K(Z) = 7,/240Z,
HO(SpeCZét7 ZC(_3)) = Z/2Z7
H'(SpecZg;, 7Z¢(—3)) = 0.

We note that, as expected,

B By 1 |H%SpecZg, 2°(-3))]
((SpecZ,—3) = ((-3) = 4 120 |H-Y(SpecZg, Z(=3))|

The localization gives

H~'(SpecZ[1/2] ¢, Z¢(—3)) = H ™ (Spec Zg;, Z¢(—3)) = 7./240Z,
HY(SpecZ[1/2] 4, 2°(—3)) = Z/2Z. ® 7./ TZ,
H*'(Spec Z[1/2] ¢, Z°(—3)) = H*(Spec Zg;, Z¢(—3)) = 0.

Arithmetically, this corresponds to the fact that the zeta function of Spec Z[1/2]

has the same Euler product as ((s), with the factor # removed. Therefore,
when s = —3, the zeta-value should be corrected by 23 —1 = 7.

For Al | we now have
)
P

Z/(plin - ]-)Za = _]-7

Hi(A%mét,Zc(n)) =~ H'"*2(SpecF, ¢, Z6(n — 1)) = {0 i1
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In particular, the motivic cohomology of A%p is concentrated in

H™Y(Ag, o, 2°(=3)) 2 Z/(p* — 1)L

Consider the normalization of X, given by X’ = SpecZ[1/2] U A]%p:

Here Z = {p}, Z' = {PB,P'}, and

{(a, /) € Z[1/2] x Fp[t] | a = f(0) =0  (mod p)},
{(a, f) € Z[1/2] x Fplt] [a =0 (mod p)},
{(a, f) € Z[1/2] x Fp[t] [ f(0) =0 (mod p)}.

The canonical morphism X’ — X induces an isomorphism

p:
PN
P

X'\ 2= X\ 22 (SpecZ\ {(2), (9)}) U (SpecF,[1] \ (1))-
We calculate via localizations that
H (X0, 29(=3)) = H (X \ Z) 1, Z5(=3)) & Z/200Z & Z) (" — 1)Z,

H (X4, Z°(-3)) 2 Z/2Z & Z)TZ & Z) (p* — 1)Z,
H' (X, 2°(=3)) = 0.

Consequently,
|H® (X e, 2°(=3))| 7 op -1

|H1(X ¢, Z¢(=3))[ - |H (X e, 2°(—3))] ~ 120 p — 1

At the level of zeta-functions,

C(X5) = C(Z,3) S\ Zo3) = £ 770 C(X)

1
= ————— ((SpecZ[1/2 Al
¢(SpecF,,s) C(SpecZ[1/2],s) ¢( Fp,s)
s s 1
=(1-p)(1-2 )C(S)Tpl—s'
In particular, substituting s = —3, we get

7 p3 —1

(X, =3) = — o5 o
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