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Abstract

Flach and Morin [8] constructed Weil-étale cohomology H i
W,c(X,Z(n)) for a

proper, regular arithmetic scheme X (i.e. separated and of finite type over SpecZ)
and n ∈ Z. In the case when n < 0, we generalize their construction to an ar-

bitrary arithmetic scheme X, thus removing the proper and regular assumption.

The construction uses étale motivic cohomology groups H i(Xét,Zc(n)), defined via

Bloch cycle complexes [4], which were studied by Geisser [14] in the context of

arithmetic duality theorems. It assumes their finite generation for n < 0. We give a

class of X for which finite generation is known, and hence H i
W,c(X,Z(n)) is defined

unconditionally.

1 Introduction

Lichtenbaum, in a series of papers [24, 25, 26], has envisioned a new cohomology theory for

schemes, known as Weil-étale cohomology. The case of varieties over finite fields X/Fq
was further studied by Geisser [10, 12, 13]. Morin defined in [32] Weil-étale cohomology

with compact support H i
W,c(X,Z) for X → SpecZ separated, of finite type, proper, and

regular. This construction was further generalized by Flach and Morin in [8] to the groups

H i
W,c(X,Z(n)) with arbitrary weights n ∈ Z, under the same assumptions on X.

The aim of this paper is to remove the assumption that X is proper and regular and,

following the ideas of [8], to construct the groups H i
W,c(X,Z(n)) for any X separated and

of finite type over SpecZ for the case of strictly negative weights n < 0.

2010 Mathematics Subject Classification. Primary 14F20; Secondary 14F42.

Key words and phrases. Motivic cohomology, étale cohomology, Weil-étale cohomology.

1



Weil-étale cohomology and duality for n < 0 2

As Flach and Morin already suggest in [8, Remark 3.11], we rework all their construc-

tions in terms of Zc(n), which is a variant of Bloch’s cycle complexes [4, 11], considered

by Geisser in [14] in the context of arithmetic duality theorems.

In a forthcoming paper we apply the results of this text to relate the cohomology

groups H i
W,c(X,Z(n)) to the special value of the zeta function ζ(X, s) at s = n < 0.

Notation and conventions

Arithmetic schemes. In this work, an arithmetic scheme is a scheme X that is

separated and of finite type over SpecZ.

Abelian groups. Let A be an abelian group. For m ≥ 1 we denote by mA its m-torsion

subgroup, and by Am the quotient A/mA:

0→ mA→ A
×m−−→ A→ Am → 0.

We denote by Adiv (resp. Ator) the maximal divisible subgroup (resp. maximal torsion

subgroup), and by Acotor the quotient A/Ator (following the notation in [8]).

We say that A is of cofinite type if it is Q/Z-dual to a finitely generated abelian

group: A = Hom(B,Q/Z) for a finitely generated B.

Complexes. All our constructions take place in the derived category of abelian groups

D(Z). For our purposes, we introduce the following terminology. Recall first that a

complex of abelian groups A• is perfect if it is bounded (i.e. H i(A•) = 0 for |i| ≫ 0),

and H i(A•) are finitely generated abelian groups.

Definition 1.1. A complex of abelian groups A• is almost perfect if the cohomology

groups H i(A•) are finitely generated, and bounded, except for possible finite 2-torsion in

arbitrarily high degree. That is, H i(A•) = 0 for i ≪ 0 and H i(A•) is finite 2-torsion for

i≫ 0.

A complex of abelian groups A• is of cofinite type if the cohomology groups H i(A•)

are of cofinite type and bounded.

A complex of abelian groups A• is almost of cofinite type if the cohomology groups

H i(A•) are of cofinite type and bounded, except for possible finite 2-torsion in arbitrarily

high degree.

This terminology is ad hoc and was invented for this text, since such complexes will

appear frequently. Some basic observations about almost perfect and almost cofinite type

complexes are collected in Appendix A. We note that this finite 2-torsion in arbitrarily

high degrees could be removed by working with the Artin–Verdier topology X ét instead
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of the usual étale topology Xét. The general construction and basic properties of X ét are

treated in [8, Appendix A], but only for a proper and regular arithmetic scheme X. Our

methods circumvent this restriction at the cost of some technical hurdles with 2-torsion.

Étale cohomology. For an arithmetic scheme X and a complex of étale sheaves F•,

we denote by

RΓ(Xét,F•) (resp. RΓc(Xét,F•), RΓ̂c(Xét,F•))

the complex that computes the corresponding cohomology, resp. cohomology with com-

pact support, and modified cohomology with compact support. For the convenience of

the reader, we review the definitions in Appendix B. The purpose of RΓ̂c(Xét,F•) is

to take care of real places X(R). There exists a canonical projection RΓ̂c(Xét,F•) →
RΓc(Xét,F•), which is an isomorphism if X(R) = ∅.

G-equivariant sheaves and their cohomology. Let X be a topological space with

an action of a discrete group G. A G-equivariant sheaf F on X can be defined as an

espace étalé π : E → X with a G-action on E such that the projection π is G-equivariant

(see e.g. [28, §II.6 + pp. 594]). We denote by Sh(G,X ) the corresponding category.

The equivariant global sections are defined by

Γ(G,X ,F) = F(X )G,

with G acting on F(X ) = {s : X → E | π ◦ s = idX} via (g · s)(x) = g · s(g−1 · x).
The corresponding G-equivariant cohomology is given by the right derived functors of

Γ(G,X ,−).
More details on G-equivariant sheaves can be found in [31, Chapitre 2]. For our modest

purposes, it suffices to know that any G-module A gives rise to the corresponding abelian

G-equivariant constant sheaf. The latter corresponds to the espace étalé X × A → X ,
where A is endowed with the discrete topology.

GR-equivariant cohomology of X(C). Given an arithmetic scheme X, we denote by

X(C) the set of complex points of X endowed with the analytic topology. It carries the

natural action of the Galois group GR := Gal(C/R).
We consider the GR-modules

Z(n) := (2πi)n Z, Q(n) := (2πi)nQ, Q/Z(n) := Q(n)/Z(n)

as constant GR-equivariant sheaves on X(C).



Weil-étale cohomology and duality for n < 0 4

Then RΓc(X(C), A(n)) for A = Z,Q,Q/Z (the complex that computes singular co-

homology with compact support of X(C) with coefficients in A(n)) is a complex of GR-

modules, and we can further take the group cohomology (resp. Tate cohomology):

RΓc(GR, X(C), A(n)) := RΓ(GR, RΓc(X(C), A(n))),

RΓ̂c(GR, X(C), A(n)) := RΓ̂(GR, RΓc(X(C), A(n))).

By definition, this is the GR-equivariant cohomology (resp. GR-equivariant Tate

cohomology) with compact support of X(C) with coefficients in A(n).

Motivic cohomology H i(Xét,Zc(n)). Our construction is based on motivic cohomol-

ogy defined in terms of complexes of sheaves Zc(n) on Xét. The definition goes back to

Bloch [4]; see [11] for a survey. We follow the notation of [14] for Zc(n).
For i ≥ 0 we consider the algebraic simplex

∆i = SpecZ[t0, . . . , ti]/(
∑
i

ti − 1).

We fix a non-positive weight n ≤ 0. Let zn(X, i) be the free abelian group generated by the

closed integral subschemes Z ⊂ X×∆i of dimension n+i that intersect the faces properly.

Then zn(X, •) is a (homological) complex of abelian groups whose differentials are given

by the alternating sum of intersections with the faces. We consider the (cohomological)

complex of étale sheaves

Zc(n) := zn( ,−•)[2n].

The boundedness from below of Zc(n) is not known in general; it is a variant of the

Beilinson–Soulé vanishing conjecture. To work unconditionally with the derived functors,

we use K-injective resolutions [36, 34] (resp. K-flat resolutions for the derived tensor

products).

To avoid any confusion, we use cohomological numbering for all complexes in this

paper, so we set

H i(Xét,Zc(n)) := H i(RΓ(Xét,Zc(n))).

([14] uses homological numbering.)

Assumptions

Weights. In this paper, n normally denotes a strictly negative integer, which will be the

weight in the cohomology groupsH i
W,c(X,Z(n)). The results in §3 on cohomology ofX(C)

apply for any weight n ∈ Z; all other results regarding cohomology groups H i(Xét,Zc(n)),
H i

fg(X,Z(n)), H i
W,c(X,Z(n)) apply for n < 0.
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Finite generation conjecture. Our construction of the Weil-étale cohomology groups

H i
W,c(X,Z(n)) uses the following assumption.

Conjecture 1.2. Lc(Xét, n): for an arithmetic scheme X and n < 0, the cohomology

groups H i(Xét,Zc(n)) are finitely generated for all i ∈ Z.

See Proposition 8.3 for consistency of Lc(Xét, n) with other conjectures that appear in

the literature. We refer to §8 for the cases where the conjecture is known.

Main results

Here we state the main results of this paper that are needed for the construction of Weil-

étale cohomology. One of our main objects is the following complex of abelian sheaves

Z(n) on Xét.

Definition 1.3 ([8, §3.1], [10, §7]). Let X be an arithmetic scheme and n < 0. For a

prime p, consider the localization X[1/p], and let µpr be the sheaf of pr-th roots of unity

on X[1/p]. We define the twist of µpr by n as

µ⊗n
pr = HomX[1/p](µ

⊗(−n)
pr ,Z/prZ).

Now Z(n) is the complex of sheaves on Xét given by

Z(n) = Q/Z(n)[−1], where Q/Z(n) =
⊕
p

lim−→
r

jp!µ
⊗n
pr ,

and jp is the canonical open immersion X[1/p]→ X.

The above sheaves Z(n) should not be confused with cycle complexes; the latter are

Zc(n) in the context of this paper. In §2 we prove the following arithmetic duality theorem

relating the two.

Theorem I. Assuming Conjecture Lc(Xét, n), for n < 0, there is a quasi-isomorphism

RΓ̂c(Xét,Z(n))
∼=−→ RHom(RΓ(Xét,Zc(n)),Q/Z[−2]).

The second result is related to the following morphism of complexes.

Definition 1.4. We define v∗∞ : RΓc(Xét,Q/Z(n))→ RΓc(GR, X(C),Q/Z(n)) as the
morphism in the derived category D(Z) induced by the comparison of étale and analytic

topology

Γc(Xét,Q/Z(n))→ Γc(GR, X(C), α∗Q/Z(n)) ∼= Γc(GR, X(C),Q/Z(n))
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(see Proposition B.5 and 6.1). Then we let u∗
∞ : RΓc(Xét,Z(n)) → RΓc(GR, X(C),Z(n))

be the composition

RΓc(Xét,Z(n)) := RΓc(Xét,Q/Z(n))[−1] v∗∞[−1]−−−−→ RΓc(GR, X(C),Q/Z(n))[−1]
→ RΓc(GR, X(C),Z(n))

where the last arrow is induced by Q/Z(n)[−1] → Z(n), which comes from the distin-

guished triangle of constant GR-equivariant sheaves Z(n)→ Q(n)→ Q/Z(n)→ Z(n)[1].

Theorem II. Assuming Conjecture Lc(Xét, n), for n < 0, the morphism u∗
∞ : RΓc(Xét,Z(n))→

RΓc(GR, X(C),Z(n)) is torsion, i.e. there exists a nonzero integer m such that mu∗
∞ = 0.

Outline of the paper

Here we describe the structure of this paper, as well as our construction of the Weil-étale

complexes RΓW,c(X,Z(n)).
First, §2 is devoted to the proof of Theorem I. Some of its consequences are deduced in

§4. Namely, if we assume Conjecture Lc(Xét, n), then RΓ(Xét,Zc(n)) is an almost perfect

complex, while RΓc(Xét,Z(n)) is almost of cofinite type in the sense of Definition 1.1. For

this, we first make a small digression in §3 to analyze what kind of complexes we obtain

for the GR-equivariant cohomology of X(C).
Theorem I is used in §5 to define a morphism αX,n in the derived category (see Defi-

nition 5.1), and declare RΓfg(X,Z(n)) to be its cone:

RHom(RΓ(Xét,Zc(n)),Q[−2])
αX,n−−−→ RΓc(Xét,Z(n))→ RΓfg(X,Z(n))

→ RHom(RΓ(Xét,Zc(n)),Q[−1]).

The notation “fg” comes from the fact that RΓfg(X,Z(n)) is an almost perfect complex

in the sense of Definition 1.1. Thanks to specific properties of the complexes involved,

it turns out that RΓfg(X,Z(n)) is defined up to a unique isomorphism in the derived

category (which is not normally expected from a cone).

Then in §6 we establish Theorem II, and it is used in §7 to define Weil-étale complexes

RΓW,c(X,Z(n)). To do this, we deduce from Theorem II that u∗
∞◦αX,n = 0, which implies

that there exists a morphism in the derived category

i∗∞ : RΓfg(X,Z(n))→ RΓc(GR, X(C),Z(n)).

We choose a mapping fiber of i∗∞ and call it RΓW,c(X,Z(n)), which turns out to be

a perfect complex. The definition of RΓW,c(X,Z(n)) fits in the following commutative
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diagram with distinguished triangles in the derived category D(Z):

RHom(RΓ(Xét,Zc(n)),Q[−2]) 0

RΓc(Xét,Z(n)) RΓc(GR, X(C),Z(n))

RΓW,c(X,Z(n)) RΓfg(X,Z(n)) RΓc(GR, X(C),Z(n)) RΓW,c(X,Z(n))[1]

RHom(RΓ(Xét,Zc(n)),Q[−1]) 0

αX,nDfn. 5.1

u∗∞

Dfn. 1.4

id

i∗∞

The resulting complex is the same as defined in [8] if X is proper and regular.

In §8 we consider the cases of X for which Conjecture Lc(Xét, n) is known, and hence

our results hold unconditionally, and in §9 we verify that if X is proper and regular, our

complex RΓW,c(X,Z(n)) is isomorphic to that constructed in [8] by Flach and Morin.

There are two appendices to this paper: Appendix A collects some lemmas from homo-

logical algebra, and Appendix B gives an overview of the definitions of étale cohomology

with compact support RΓc(Xét,−) and its modified version RΓ̂c(Xét,−).
This work is inspired by [8]. Here is a brief comparison between the notation and

assumptions.

this paper Flach–Morin

X → SpecZ
separated, of finite type

X → SpecZ
proper, regular, equidimensional

n < 0 n ∈ Z

cycle complexes

Zc(n)
cycle complexes

Z(d− n)[2d], d = dimX

RΓfg(X,Z(n))
RΓW (X,Z(n)),

up to finite 2-torsion

RΓW,c(X,Z(n)) RΓW,c(X,Z(n))
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2 Proof of Theorem I

At the heart of our constructions is an arithmetic duality theorem for cycle complexes

established by Geisser in [14]. The purpose of this section is to deduce Theorem I from

Geisser’s duality. We would like to obtain a quasi-isomorphism of complexes

RΓ̂c(Xét,Z(n))
∼=−→ RHom(RΓ(Xét,Zc(n)),Q/Z[−2]).

Here RΓ̂c(Xét,Z(n)) denotes the modified étale cohomology with compact support,

described in Appendix B. We note that [14] uses the notation “RΓc” for our “RΓ̂c”, but

we take special care to distinguish the two things, since we also need the usual étale

cohomology with compact support RΓc(Xét,Z(n)).
We split our proof of Theorem I into two propositions.

Proposition 2.1. For any n < 0 we have a quasi-isomorphism of complexes

(1) RΓ̂c(Xét,Z(n)) ∼= lim−→
m

RHom(RΓ(Xét,Z/mZc(n)),Q/Z[−2]).

Proof. We unwind our definition of Z(n) for n < 0 and reduce everything to the

results from [14]. Since Z(n) :=
⊕

p lim−→r
jp!µ

⊗n
pr [−1], and étale cohomology commutes with

filtered colimits of coefficients, it suffices to show that for every prime p and r ≥ 1 there

is a quasi-isomorphism of complexes

(2) RΓ̂c(Xét, jp!µ
⊗n
pr [−1]) ∼= RHom(RΓ(Xét,Zc/pr(n)),Q/Z[−2]).

As in Definition 1.3, here jp denotes the canonical open immersion jp : X[1/p] ↪→ X.

We further denote by f the structure morphism X → SpecZ and by fp the structure

morphism X[1/p]→ SpecZ[1/p]:

X[1/p] X

SpecZ[1/p] SpecZ

jp

fp f
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As we are going to change the base scheme, let us write HomX(−,−) for the Hom

between sheaves on Xét and HomX(−,−) for the internal Hom. Instead of HomSpecR, we

will simply write HomR.

Applying various results from [9] and [14], we obtain a quasi-isomorphism of complexes

of sheaves

RHomX(jp!µ
⊗n
pr [−1],ZcX(0)) ∼=

∼= Rjp∗RHomX[1/p](µ
⊗n
pr [−1],ZcX[1/p](0)) [14, Prop. 7.10 c)]

∼= Rjp∗RHomX[1/p](f
∗
pµ

⊗n
pr [−1],ZcX[1/p](0))

∼= Rjp∗Rf !
pRHomZ[1/p](µ

⊗n
pr [−1],ZcZ[1/p](0)) [14, Prop. 7.10 c)]

∼= Rjp∗Rf !
pRHomZ[1/p](µ

⊗n
pr [−1],Gm[1]) [14, Lemma 7.4]

∼= Rjp∗Rf !
pRHomZ[1/p](µ

⊗n
pr ,Gm)[2]

∼= Rjp∗Rf !
p µ

⊗(1−n)
pr [2]

∼= Rjp∗Rf !
p

(
ZZ[1/p]/p

r(1− n)
)
[2] ∼= Rjp∗Rf !

p ZcZ[1/p]/pr(n) [9, Thm. 1.2]

∼= Rjp∗ZcX[1/p]/p
r(n) [14, Prop. 7.10 a)]

∼= Rjp∗j
∗
pZcX/pr(n) ∼= ZcX/pr(n) [14, Thm. 7.2 a), Prop. 2.3]

After applying RΓ(Xét,−), we get a quasi-isomorphism of complexes of abelian groups

RHom(jp!µ
⊗n
pr [−1],ZcX(0)) ∼= RΓ(Xét,ZcX/pr(n)).

Now according to the duality [14, Theorem 7.8],

RHom(jp!µ
⊗n
pr [−1],Zc(0)) ∼= RHom(RΓ̂c(Xét, jp!µ

⊗n
pr [−1]),Q/Z[−2]).

What we end up with is a quasi-isomorphism

RΓ(Xét,Zc/pr(n)) ∼= RHom(RΓ̂c(Xét, jp!µ
⊗n
pr [−1]),Q/Z[−2]).

The groups Ĥ i
c(Xét, jp!µ

⊗n
pr [−1]) are finite (the sheaves jp!µ⊗n

pr are constructible), so apply-

ing RHom(−,Q/Z[−2]) yields (2).

To conclude the proof of Theorem I, we identify the complex on the right-hand side

of (1). For this, we need Conjecture Lc(Xét, n).

Proposition 2.2. Assuming Conjecture Lc(Xét, n), for n < 0, there is a quasi-

isomorphism

lim−→
m

RHom(RΓ(Xét,Z/mZc(n)),Q/Z[−2]) ∼= RHom(RΓ(Xét,Zc(n)),Q/Z[−2]).
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Proof. Consider short exact sequences

0→ H i(Xét,Zc(n))m → H i(Xét,Z/mZc(n))→ mH
i+1(Xét,Zc(n))→ 0.

If we now take Hom(−,Q/Z) and filtered colimits lim−→m
, we get

(3) 0→ lim−→
m

Hom(mH
i+1(Xét,Zc(n)),Q/Z)→

lim−→
m

Hom(H i(Xét,Z/mZc(n)),Q/Z)→

lim−→
m

Hom(H i(Xét,Zc(n))m,Q/Z)→ 0.

By Conjecture Lc(Xét, n), the group H i+1(Xét,Zc(n)) is finitely generated, and hence

the first lim−→m
in the short exact sequence (3) vanishes, and we obtain isomorphisms

lim−→
m

Hom(H i(Xét,Zc(n))m,Q/Z)
∼=−→ lim−→

m

Hom(H i(Xét,Z/mZc(n)),Q/Z).

It remains to note that the left-hand side is canonically isomorphic to Hom(H i(Xét,Zc(n)),Q/Z),
again thanks to the finite generation of H i(Xét,Zc(n)), under Conjecture Lc(Xét, n).

To see this, observe that if A is a finitely generated abelian group, there is a canonical

isomorphism

lim−→
m

Hom(Am,Q/Z) ∼= Hom(A,Q/Z)

induced by A→ Am, and then applying the functor Hom(−,Q/Z) and lim−→m
. Since Q/Z

is a torsion group, any homomorphism A → Q/Z is killed by some m, hence factors

through Am.

3 GR-equivariant cohomology of X(C)

Lemma 3.1. Let A• be a perfect complex of ZGR-modules.

1) The complex A• ⊗L Q/Z is of cofinite type.

2) RΓ(GR, A
• ⊗ Q) ∼= (A• ⊗ Q)GR is a perfect complex of Q-vector spaces, and the

complex RΓ̂(GR, A
• ⊗Q) is quasi-isomorphic to 0.

3) RΓ̂(GR, A
• ⊗L Q/Z) ∼= RΓ̂(GR, A

•[+1]), and these complexes have finite 2-torsion

cohomology.

4) RΓ(GR, A
•) is almost perfect, and RΓ(GR, A

• ⊗L Q/Z) is almost of cofinite type.
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Proof. The universal coefficient theorem gives us short exact sequences

0→ H i(A•)m → H i(A• ⊗L Z/mZ)→ mH
i+1(A•)→ 0.

The colimit of these over m is

0→ H i(A•)⊗Q/Z→ H i(A• ⊗L Q/Z)→ H i+1(A•)tor → 0.

Here H i(A•) ⊗ Q/Z is injective, hence the short exact sequence splits. We see that

H i(A• ⊗L Q/Z) is of cofinite type and vanishes for |i| ≫ 0, i.e. that A• ⊗L Q/Z is of

cofinite type.

Let us now consider the spectral sequences

Epq
2 = Hp(GR, H

q(A• ⊗Q)) =⇒ Hp+q(GR, A
• ⊗Q),(4)

Epq
2 = Ĥp(GR, H

q(A• ⊗Q)) =⇒ Ĥp+q(GR, A
• ⊗Q).(5)

We recall that Hp(GR,−) are 2-torsion groups for p > 0. Since Hq(A• ⊗Q) are Q-vector

spaces, it follows that Epq
2 = 0 for p > 0 in (4), and the spectral sequence degenerates.

Similarly, the Tate cohomology groups Ĥp(GR, H
q(A• ⊗ Q)) are trivial for all p for the

same reasons, so that (5) is trivial. This proves part 2).

Part 3) now follows from the distinguished triangle

RΓ̂(GR, A
•)→ RΓ̂(GR, A

• ⊗Q)→ RΓ̂(GR, A
• ⊗L Q/Z)→ RΓ̂(GR, A

•)[1].

Next, examining the spectral sequence

Epq
2 = Hp(GR, H

q(A•)) =⇒ Hp+q(GR, A
•),

we see that the groups H i(GR, A
•) are finitely generated, zero for i ≪ 0, and torsion for

i≫ 0. The latter is 2-torsion. To see that, let P• ↠ Z be the bar-resolution of Z by free

ZGR-modules. Consider the morphism of complexes

· · · P3 P2 P1 P0 0

· · · P3 P2 P1 P0 0

2 2 2 2−N

where N denotes the norm map. The proof of [39, Theorem 6.5.8] shows that the above

morphism induces multiplication by 2 on H i(GR,−) for i > 0, and it is null-homotopic.

Since A• is bounded, we see that the above morphism induces multiplication by 2 on

H i(GR, A
•) for i≫ 0.

Similarly, analyzing

Epq
2 = Hp(GR, H

q(A• ⊗L Q/Z)) =⇒ Hp+q(GR, A
• ⊗L Q/Z).
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we see that H i(GR, A
• ⊗L Q/Z) are groups of cofinite type. To see that these are finite

2-torsion for i≫ 0, consider the triangle

RΓ(GR, A
•)→ RΓ(GR, A

• ⊗Q)→ RΓ(GR, A
• ⊗L Q/Z)→ RΓ(GR, A

•)[1].

Here RΓ(GR, A
• ⊗Q) is bounded, and therefore H i(GR, A

• ⊗L Q/Z) ∼= H i+1(GR, A
•) for

i≫ 0.

Proposition 3.2. Let X be an arithmetic scheme and n ∈ Z. Then X(C) has the

following types of complexes as its cohomology:

A = Z A = Q A = Q/Z

RΓc(X(C), A(n)) perfect/Z perfect/Q cofinite type

RΓc(GR, X(C), A(n)) almost
perfect

perfect/Q
almost

cofinite type

RΓ̂c(GR, X(C), A(n)) finite
2-torsion

∼= 0
finite

2-torsion

Moreover, there is an isomorphism

(6) Ĥ i
c(GR, X(C),Z(n)) ∼= H i

c(GR, X(C),Z(n)) for i ≥ 2 dimX − 1.

This result is purely topological and holds for any n ∈ Z, unlike other results of

this paper regarding motivic cohomology that are stated for n < 0. Here Z(n), Q(n),

Q/Z(n) are the constant GR-equivariant sheaves (2πi)n Z, (2πi)nQ, Q(n)/Z(n) respec-

tively. Their relation to the sheaves Z(n), Q(n), Q/Z(n) on Xét (Definition 1.3) is given

by Proposition 6.1 below.

Proof. We claim that Hq
c (X(C),Z(n)) are finitely generated groups, and

(7) Hq
c (X(C),Z(n)) = 0 for q /∈ [0, 2 dimX − 2].

We may assume X(C) ̸= ∅. The topological dimension of X(C) satisfies dimX =

1 + dimXC = 1 + 1
2
dimtopX(C), so that dimtopX(C) = 2 dimX − 2.

If X(C) is smooth, we may assume it is of pure dimension d = dimtopX(C). Then

finite generation and (7) follow from the Poincaré duality

H i
c(X(C),Z(n)) ∼= H2d−i(X(C),Z(n)),

and the fact that X(C) has the homotopy type of a finite CW-complex by van der Waer-

den’s theorem (see [38] and more recent expositions with more general results in [27, 21]).
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In the general case, we use induction on the dimension of X(C). Consider the decom-

position U(C) ↪→ X(C) ←↩ Z(C), where Z(C) is the singular locus. In the long exact

sequence

· · · → Hq
c (U(C),Z(n))→ Hq

c (X(C),Z(n))→ Hq
c (Z(C),Z(n))→ Hq+1

c (U(C),Z(n))→ · · ·

the groups Hq
c (U(C),Z(n)) are finitely generated by the smooth case, and Hq

c (Z(C),Z(n))
are finitely generated by induction hypothesis. It follows that Hq

c (X(C),Z(n)) are finitely
generated. Similarly we conclude by induction that (7) holds.

The rest of the table is an application of the previous lemma to RΓc(X(C),Z(n)).
Finally, (6) follows from the spectral sequences

Êpq
2 = Ĥp(GR, H

q
c (X(C),Z(n))) =⇒ Ĥ i

c(GR, X(C),Z(n)),

Epq
2 = Hp(GR, H

q
c (X(C),Z(n))) =⇒ H i

c(GR, X(C),Z(n)),

using (7) and the isomorphism Ĥp(GR,−) ∼= Hp(GR,−) for p ≥ 1.

4 Some consequences of Theorem I

Now we deduce some consequences from the duality Theorem I.

Lemma 4.1. The canonical morphism ϕi : Ĥ i
c(Xét,Z(n)) → H i

c(Xét,Z(n)) sits in a

long exact sequence

· · · → Ĥ i−1
c (GR, X(C),Z(n))→ Ĥ i

c(Xét,Z(n))
ϕi−→ H i

c(Xét,Z(n))

→ Ĥ i
c(GR, X(C),Z(n))→ · · ·

where the groups Ĥ i
c(GR, X(C),Z(n)) are finite 2-torsion. In particular,

1) the kernel and cokernel of ϕi are finite 2-torsion,

2) if X(R) = ∅, then RΓ̂c(GR, X(C),Z(n)) = 0 and Ĥ i
c(Xét,Z(n)) ∼= H i

c(Xét,Z(n)).

Proof. The exact sequence follows from the definition of modified étale cohomology

with compact support and Artin’s comparison theorem. This is proved in [8, Lemma 6.14].

In particular, the argument shows that RΓ̂c(GR, X(C),Z(n)) ∼= RΓ̂(GR, v
∗Rf∗Z(n)) where

v : SpecC→ SpecZ and f : X → SpecZ, and RΓ̂c(GR, X(C),Z(n)) = 0 if X(R) = ∅.
The fact that Ĥ i

c(GR, X(C),Z(n)) are finite 2-torsion is a part of Proposition 3.2.

Proposition 4.2. Let X be an arithmetic scheme of dimension d satisfying Conjec-

ture Lc(Xét, n), let n < 0.
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1) If X(R) = ∅, then H i(Xét,Zc(n)) = 0 for i > 1 or i < −2d.

2) In general, H i(Xét,Zc(n)) = 0 for i < −2d, and H i(Xét,Zc(n)) is a finite 2-torsion

group for i > 1.

3) If X/Fq is a variety over a finite field, then the groups H i(Xét,Zc(n)) are finite for

all i ∈ Z.

In general, we have the following cohomology for n < 0:

groups type i≪ 0 i≫ 0

H i(Xét,Zc(n))
finitely

generated
0 for i < −2d finite

2-torsion
for i > 1

Ĥ i
c(Xét,Z(n)) cofinite

finite
2-torsion

for i < 1 0 for i > 2d+ 2

H i
c(Xét,Z(n)) cofinite 0 for i < 1

finite
2-torsion

for i > 2d+ 2

In particular, RΓ(Xét,Zc(n)) is an almost perfect complex, while RΓc(Xét,Z(n)) is almost

of cofinite type in the sense of Definition 1.1.

Proof. If X(R) = ∅, then our duality Theorem I gives

Hom(H2−i(Xét,Zc(n)),Q/Z) ∼= Ĥ i
c(Xét,Z(n))

X(R)=∅∼= H i
c(Xét,Z(n)).

We have H i
c(Xét,Z(n)) = 0 for i < 1 by the definition of Z(n), and H i

c(Xét,Z(n)) =

H i−1(Xét,Q/Z(n)) = 0 for i > 2d + 2 for reasons of ℓ-adic cohomological dimension [1,

Exposé X, Théorème 6.2]. This proves part 1) of the proposition.

In part 2), the group H i(Xét,Zc(n)) is finite 2-torsion for i > 1, thanks to part 1) and

Lemma 4.1. Moreover, we have H i(Xét,Zc(n)) ∼= H i(Xét,Qc(n)) for i < −2d according

to [32, Lemma 5.12]. Conjecture Lc(Xét, n) implies that these groups are Q-vector spaces

finitely generated over Z, hence trivial.

In part 3), the cohomology groups H i(Xét,Z(n)) = H i−1(Xét,Q/Z(n)) are finite for

n < 0 by [22, Theorem 3].

5 Complex RΓfg(X,Z(n))

The purpose of this section is to define auxiliary complexes RΓfg(X,Z(n)), which are used

below in the construction of Weil-étale cohomology.
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Definition 5.1. Assuming Conjecture Lc(Xét, n) and n < 0, consider the morphism

αX,n in the derived category D(Z) given by the composition

RHom(RΓ(Xét,Zc(n)),Q[−2]) RHom(RΓ(Xét,Zc(n)),Q/Z[−2])

RΓ̂c(Xét,Z(n))

RΓc(Xét,Z(n))

Q↠Q/Z

αX,n

Theorem I ∼=

proj.

Here the first arrow is induced by the canonical projection Q → Q/Z, and the last

arrow is the canonical projection from the modified cohomology with compact support to

the usual cohomology with compact support (see Appendix B).

We define the complex RΓfg(X,Z(n)) as a cone of αX,n:

RHom(RΓ(Xét,Zc(n)),Q[−2])
αX,n−−−→ RΓc(Xét,Z(n))→ RΓfg(X,Z(n))

→ RHom(RΓ(Xét,Zc(n)),Q[−1]).

Further, we denote

H i
fg(X,Z(n)) := H i(RΓfg(X,Z(n))).

Remark 5.2. Under Conjecture Lc(Xét, n), the groups H
i
c(Xét,Z(n)) for n < 0 are of

cofinite type by Theorem I, while RHom(RΓ(Xét,Zc(n)),Q[−2]) is a complex of Q-vector

spaces. Therefore, the morphism αX,n is completely determined by the maps between

cohomology groups

H i(αX,n) : Hom(H2−i(Xét,Zc(n)),Q)→ H i
c(Xét,Z(n))

—see Lemma A.5.

Remark 5.3. We note that our RΓfg(X,Z(n)) plays the same role as RΓW (X ét,Z(n))
in [8, Definition 3.6]. We use a different notation since Flach and Morin work with the

Artin–Verdier topology and their complex RΓW (X ét,Z(n)) is perfect, while our complex

can have finite 2-torsion in arbitrarily high degree.

We first note that the definition simplifies when X has no real places.

Proposition 5.4. Assuming conjecture Lc(Xét, n), for n < 0, if X(R) = ∅, then

RΓfg(X,Z(n)) ∼= RHom(RΓ(Xét,Zc(n)),Z[−1]).
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Proof. In this case RΓ̂c(Xét,Z(n))→ RΓc(Xét,Z(n)) is the identity morphism, and

therefore αX,n sits in the following commutative diagram with distinguished columns:

RHom(RΓ(Xét,Zc(n)),Q[−2]) RHom(RΓ(Xét,Zc(n)),Q[−2])

RΓc(Xét,Z(n)) RHom(RΓ(Xét,Zc(n)),Q/Z[−2])

RΓfg(X,Z(n)) RHom(RΓ(Xét,Zc(n)),Z[−1])

RHom(RΓ(Xét,Zc(n)),Q[−1]) RHom(RΓ(Xét,Zc(n)),Q[−1])

αX,n

id

∼=
Theorem I

∼=

id

Here the first column is our definition of RΓfg(X,Z(n)), and the second column is induced

by the distinguished triangle Z→ Q→ Q/Z→ Z[1].

Proposition 5.5. Assuming Conjecture Lc(Xét, n), the complex RΓfg(X,Z(n)) for

n < 0 is almost perfect in the sense of Definition 1.1, i.e. its cohomology groups H i
fg(X,Z(n))

are finitely generated, trivial for i≪ 0, and 2-torsion for i≫ 0.

Proof. By the definition of RΓfg(X,Z(n)), there are short exact sequences

0→ cokerH i(αX,n)→ H i
fg(X,Z(n))→ kerH i+1(αX,n)→ 0.

The morphism αX,n is given at the level of cohomology by

H i(αX,n) : Hom(H2−i(Xét,Zc(n)),Q)
ψi

−→ Hom(H2−i(Xét,Zc(n)),Q/Z)
∼=−→

Ĥ i
c(Xét,Z(n))

ϕi−→ H i
c(Xét,Z(n))

where H2−i(Xét,Zc(n)) is a finitely generated abelian group according to Lc(Xét, n). We

consider the ker-coker exact sequence (ignoring the isomorphism in the middle)

0→ Hom(H2−i(Xét,Zc(n)),Z)︸ ︷︷ ︸
∼=kerψi

→ kerH i(αX,n)→ kerϕi →

Hom(H2−i(Xét,Zc(n))tor,Q/Z)︸ ︷︷ ︸
∼=cokerψi

→ cokerH i(αX,n)→ cokerϕi → 0.

Here kerϕi and cokerϕi are finite 2-torsion according to Lemma 4.1, andH•(Xét,Zc(n))
are finitely generated by Lc(Xét, n). This establishes finite generation of kerH i+1(αX,n)

and cokerH i(αX,n), and hence of H i
fg(X,Z(n)).

From the description of cohomology groups in Proposition 4.2, for i ≪ 0 we have

Hom(H2−i(Xét,Zc(n)),Q) = H i
c(Xét,Z(n)) = 0, and hence H i

fg(X,Z(n)) = 0. On the

other hand, for i ≫ 0 we have Hom(H2−i(Xét,Zc(n)),Q) = 0, so that H i
fg(X,Z(n)) ∼=

H i
c(Xét,Z(n)) is a finite 2-torsion group.
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Proposition 5.6. Assuming conjecture Lc(Xét, n), for n < 0, the complex RΓfg(X,Z(n))
is defined up to a unique isomorphism in the derived category D(Z).

Proof. The complex RHom(RΓ(Xét,Zc(n)),Q[−2]) consists of Q-vector spaces, and

RΓfg(X,Z(n)) is almost perfect, so we are in the situation of Corollary A.3.

Proposition 5.7. Suppose that Conjecture Lc(Xét, n) holds for n < 0 and consider

the distinguished triangle defining RΓfg(X,Z(n)):

RHom(RΓ(Xét,Zc(n)),Q[−2])
αX,n−−−→ RΓc(Xét,Z(n))

f−→ RΓfg(X,Z(n))
g−→ RHom(RΓ(Xét,Zc(n)),Q[−1]).

1) The morphism g induces an isomorphism

g ⊗Q : RΓfg(X,Z(n))⊗Q
∼=−→ RHom(RΓ(Xét,Zc(n)),Q[−1]).

2) For each m ≥ 1 the morphism f induces an isomorphism

f ⊗ Z/mZ : RΓc(Xét,Z(n))⊗L Z/mZ
∼=−→ RΓfg(X,Z(n))⊗L Z/mZ.

3) For any prime ℓ the morphism f induces an isomorphism

lim←−
r

H i
c(Xét,Z/ℓr(n)) ∼= H i

fg(X,Z(n))⊗ Zℓ.

Proof. The groups H i
c(Xét,Z(n)) are all torsion, and therefore RΓc(Xét,Z(n))⊗Q ∼=

0 in the derived category. Similarly, the complexes ofQ-vector spacesRHom(RΓ(Xét,Zc(n)),Q[· · · ])
are killed by tensoring with Z/mZ. This proves 1) and 2).

Now 2) implies 3): by the finite generation of H i
fg(X,Z(n)), we have

lim←−
r

H i
c(Xét,Z/ℓr(n))

2)∼= lim←−
r

H i
fg(X,Z/ℓr(n)) ∼= lim←−

r

H i
fg(X,Z(n))/ℓr ∼= H i

fg(X,Z(n))⊗ Zℓ.

The groups H i
fg(X,Z(n)) provide an integral model for ℓ-adic cohomology in the fol-

lowing sense (see also [10, §8]).

Corollary 5.8. Let X be an arithmetic scheme satisfying Conjecture Lc(Xét, n) for

n < 0. Then

H i
fg(X,Z(n))⊗ Zℓ ∼= H i

c(X[1/ℓ]ét,Zℓ(n)),

where the right-hand side denotes ℓ-adic cohomology with compact support.

Proof. We have Z(n)/ℓr ∼= jℓ!µ
⊗n
m . Now by part 3) of the previous proposition,

H i
fg(X,Z(n))⊗ Zℓ ∼= lim←−

r

H i
c(Xét, jℓ!µ

⊗n
ℓr ) ∼= lim←−

r

H i
c(X[1/ℓ]ét, µ

⊗n
ℓr )

dfn
= H i

c(X[1/ℓ]ét,Zℓ(n)).
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6 Proof of Theorem II

The aim of this section is to prove Theorem II. We recall that it states that the morphism

of complexes u∗
∞, defined as the composition

RΓc(Xét,Z(n)) RΓc(GR, X(C),Z(n))

RΓc(Xét,Q/Z(n))[−1] RΓc(GR, X(C),Q/Z(n))[−1]

u∗∞

v∗∞[−1]

is torsion. Here v∗∞ : RΓc(Xét,Q/Z(n)) → RΓc(GR, X(C),Q/Z(n)) is induced by the

comparison functor α∗ : Sh(Xét) → Sh(GR, X(C)), as explained in Proposition B.5. We

first ensure that α∗ identifies the sheaf Q/Z(n) on Xét from Definition 1.3 with the GR-

equivariant sheaf Q/Z(n) := (2πi)n Q
(2πi)n Z on X(C).

Proposition 6.1. For the sheaf Q/Z(n) on Xét we have an isomorphism of GR-

equivariant constant sheaves on X(C)

α∗Q/Z(n) ∼= Q/Z(n).

Proof. We first compute that the functor α∗ sends the sheaf µ⊗n
m on Xét to the

constant GR-equivariant sheaf
(2πi)n Z
m (2πi)n Z on X(C):

α∗µ⊗n
m
∼= µm(C)⊗n := Hom(µm(C)⊗(−n),Z/mZ)

∼=
(2πi)n Z

m (2πi)n Z

—here the first isomorphism comes from the definition of α∗ given in Appendix B, and

the second isomorphism comes from the corresponding isomorphism of GR-modules.

Since α∗ preserves colimits (Lemma B.4), we have

α∗Q/Z(n) = α∗
(⊕

p

lim−→
r

jp!µ
⊗n
pr

)
∼= lim−→

m

α∗µ⊗n
m
∼= lim−→

m

(2πi)n Z
m (2πi)n Z

∼=
(2πi)nQ
(2πi)n Z

.

We proceed with our proof of Theorem II. Our argument follows the proof of [8, Lemma

3.25]. We’ll need following result about ℓ-adic cohomology.

Proposition 6.2. Let X be an arithmetic scheme and n < 0. Then for any prime ℓ

we have

(H i
c(XQ,ét,Qℓ/Zℓ(n))GQ)div = 0.

Proof. We claim that for a suitable choice of prime p ̸= ℓ,

H i
c(XQ,ét,Zℓ(n)) ∼= H i

c(XFp,ét
,Zℓ(n)) for all i.
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We have f : X → SpecZ, separated, of finite type. Zℓ(n) is a constructible Zℓ-sheaf on
X in the sense of [17, Exposé VI, 1.1.1], and by [ibid., 2.2.2], Rif!Zℓ(n) is a constructible

Zℓ-sheaf on SpecZ. Now [ibid., 1.2.6] implies that there exists an open subscheme U =

SpecZS ⊂ SpecZ such that Rif!Zℓ(n) is a twisted constant sheaf on U . We may take

a finite set of primes S such that this holds for all i. Then for p /∈ S, the proper base

change for constructible sheaves [ibid. 2.2.3] applied to the diagram

XQ XU XFp

SpecQ SpecZS SpecFp

⌟
fU

⌞

η x

gives us an isomorphism

(8) H i
c(XQ,ét,Zℓ(n)) ∼= (RifU,!Zℓ(n))η ∼= (RifU,!Zℓ(n))x ∼= H i

c(XFp,ét
,Zℓ(n)).

We denote by Ip the inertia subgroup of the absolute Galois group GQp :

1→ Ip → GQp → GFp → 1.

The isomorphism (8) is equivariant under the GQp-action on the left-hand side and

GFp-action on the right-hand side. We have

H i
c(XQ,ét,Qℓ/Zℓ(n))GQ ↣ H i

c(XQ,ét,Qℓ/Zℓ(n))GQp/Ip ∼= H i
c(XFp,ét

,Qℓ/Zℓ(n))GFp ,

so it suffices to show that

(H i
c(XFp,ét

,Qℓ/Zℓ(n))GFp )div = 0.

The long exact sequence of GFp-modules

· · · → H i
c(XFp,ét

,Zℓ(n))→ H i
c(XFp,ét

,Qℓ(n))→ H i
c(XFp,ét

,Qℓ/Zℓ(n))

→ H i+1
c (XFp,ét

,Zℓ(n))→ · · ·

induces short exact sequences

(9) 0→ H i
c(XFp,ét

,Zℓ(n))cotor → H i
c(XFp,ét

,Qℓ(n))→ H i
c(XFp,ét

,Qℓ/Zℓ(n))div → 0.

HereH i
c(XFp,ét

,Zℓ(n))cotor :=
Hi

c(XFp,ét,Zℓ(n))

Hi
c(XFp,ét,Zℓ(n))tor

, and we use thatH i
c(XFp,ét

,Zℓ(n)) are finitely
generated Zℓ-modules, hence have no nontrivial divisible subgroups.

According to [18, Exposé XXI, 5.5.3], the eigenvalues of the geometric Frobenius acting

on H i
c(XFp,ét

,Qℓ) are algebraic integers. After twisting Qℓ by n, the eigenvalues will lie
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in p−n Z. Since n < 0 by our assumption, this implies that 1 does not appear as an

eigenvalue, and hence

H i
c(XFp,ét

,Qℓ(n))
GFp = 0.

Thus, after taking the GFp-invariants in (9), we obtain

0→ (H i
c(XFp,ét

,Qℓ/Zℓ(n))div)GFp → H1(GFp , H
i
c(XFp,ét

,Zℓ(n))cotor)→ · · ·

This gives a monomorphism between the maximal divisible subgroups

((H i
c(XFp,ét

,Qℓ/Zℓ(n))div)GFp )div↣ H1(GFp , H
i
c(XFp,ét

,Zℓ(n))cotor)div.

However, H1(GFp , H
i
c(XFp,ét

,Zℓ(n))cotor) is a finitely generated Zℓ-module, and therefore

its maximal divisible subgroup is trivial. We conclude that

(H i
c(XFp,ét

,Qℓ/Zℓ(n))GFp )div = ((H i
c(XFp,ét

,Qℓ/Zℓ(n))div)GFp )div = 0.

Proof of Theorem II. By Definition 1.4, this amounts to showing that the morphism

v∗∞ : RΓc(Xét,Q/Z(n))→ RΓc(GR, X(C),Q/Z(n))

is torsion. The complexes RΓc(Xét,Q/Z(n)) and RΓc(GR, X(C),Q/Z(n)) are almost of

cofinite type by Proposition 4.2 and Proposition 3.2 respectively. Therefore, according to

Lemma A.4, to show that v∗∞ : RΓc(Xét,Q/Z(n)) → RΓc(GR, X(C),Q/Z(n)) is torsion,

it suffices to show that the corresponding morphisms on the maximal divisible subgroups

H i
c(v

∗
∞)div : H

i
c(Xét,Q/Z(n))div → H i

c(GR, X(C),Q/Z(n))div

are trivial. The morphism H i
c(Xét,Q/Z(n)) → H i

c(XQ,ét,Q/Z(n)), and hence H i
c(v

∗
∞),

factors through H i
c(XQ,ét, µ

⊗n)GQ , where µ⊗n is the sheaf of all roots of unity on XQ,ét

twisted by n. So we have

H i
c(Xét,Q/Z(n))div H i

c(GR, X(C),Q/Z(n))div

(
H i
c(XQ,ét, µ

⊗n)GQ
)
div

Hi
c(v

∗
∞)div

Now

(
H i
c(XQ,ét, µ

⊗n)GQ
)
div
∼=

(⊕
ℓ

H i
c(XQ,ét,Qℓ/Zℓ(n))GQ

)
div

∼=
⊕
ℓ

(
H i
c(XQ,ét,Qℓ/Zℓ(n))GQ

)
div

,

where all the summands are trivial by Proposition 6.2.
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7 Weil-étale complex RΓW,c(X,Z(n))

The aim of this section is to construct theWeil-étale cohomology complexesRΓW,c(X,Z(n)).

Lemma 7.1. Let X be an arithmetic scheme and n < 0. Assume Conjecture Lc(Xét, n),

so that the morphism αX,n exists. Then u∗
∞ ◦ αX,n = 0.

RHom(RΓ(X,Zc(n)),Q[−2])

RΓc(Xét,Z(n)) RΓc(GR, X(C),Z(n))

αX,n
=0

u∗∞

Proof. The morphism αX,n is defined on a complex of Q-vector spaces, and u∗
∞ is

torsion by Theorem II.

Definition 7.2. Assuming Conjecture Lc(Xét, n), for n < 0, we let i∗∞ : RΓfg(X,Z(n))→
RΓc(GR, X(C),Z(n)) be a morphism in D(Z) that gives a morphism of distinguished tri-

angles

(10)

RHom(RΓ(X,Zc(n)),Q[−2]) 0

RΓc(Xét,Z(n)) RΓc(GR, X(C),Z(n))

RΓfg(X,Z(n)) RΓc(GR, X(C),Z(n))

RHom(RΓ(X,Zc(n)),Q[−1]) 0

αX,n

u∗∞

id

i∗∞

In fact, this makes i∗∞ independent of any choices.

Proposition 7.3. Assuming Conjecture Lc(Xét, n), for n < 0, there is a unique

morphism i∗∞ that fits in the diagram (10).

Proof. We can apply Corollary A.3, since RHom(RΓ(X,Zc(n)),Q[−2]) is a complex

of Q-vector spaces, and both RΓfg(X,Z(n)) and RΓc(GR, X(C),Z(n)) are almost perfect

by Proposition 5.5 and Proposition 3.2.

Proposition 7.4. Assuming Conjecture Lc(Xét, n), for n < 0, the morphism i∗∞ is

torsion.



Weil-étale cohomology and duality for n < 0 22

Proof. Let us examine the morphism of distinguished triangles (10) that defines i∗∞;

in particular, the commutative diagram

RΓc(Xét,Z(n)) RΓfg(X,Z(n))

RΓc(GR, X(C),Z(n))

u∗∞
i∗∞

According to Corollary A.3, the morphism

HomD(Z)(RΓfg(X,Z(n)), RΓc(GR, X(C),Z(n)))

→ HomD(Z)(RΓc(Xét,Z(n)), RΓc(GR, X(C),Z(n)))

induced by the composition with RΓc(Xét,Z(n)) → RΓfg(X,Z(n)), is a monomorphism,

and therefore

HomD(Z)(RΓfg(X,Z(n)), RΓc(GR, X(C),Z(n)))⊗Q→
HomD(Z)(RΓc(Xét,Z(n)), RΓc(GR, X(C),Z(n)))⊗Q

is also a monomorphism. However, u∗
∞ ⊗ Q = 0 by Theorem II, and this implies that

i∗∞ ⊗Q = 0.

We are now ready to define the Weil-étale complexes.

Definition 7.5. Assuming Conjecture Lc(Xét, n), for n < 0, we let RΓW,c(X,Z(n))
be an object in the derived category D(Z) which is a mapping fiber of i∗∞:

RΓW,c(X,Z(n))→ RΓfg(X,Z(n)) i∗∞−→ RΓc(GR, X(C),Z(n))→ RΓW,c(X,Z(n))[1].

The Weil-étale cohomology with compact support is given by

H i
W,c(X,Z(n)) := H i(RΓW,c(X,Z(n))).

Remark 7.6. Note that this defines RΓW,c(X,Z(n)) up to a non-unique isomorphism

in D(Z), and the groups H i
W,c(X,Z(n)) are also defined up to a non-unique isomorphism.

In a continuation of this paper we will make use of the determinant detZRΓW,c(X,Z(n))
in the sense of [23], which will be defined up to a canonical isomorphism.

However, we recall from Proposition 5.6 that RΓfg(X,Z(n)) is defined up to a unique

isomorphism in the derived category D(Z). If we could define i∗∞ : RΓfg(X,Z(n)) →
RΓc(GR, X(C),Z(n)) as an explicit, genuine morphism of complexes (not just as a mor-

phism in the derived category D(Z)), this would give us a canonical and functorial defi-

nition for RΓW,c(X,Z(n)).
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Case of varieties over finite fields

For varieties over finite fields, our Weil-étale cohomology has a simple description, and it

is Q/Z-dual to the arithmetic homology studied by Geisser in [13].

Proposition 7.7. If X is a variety over a finite field Fq and n < 0, then assuming

Conjecture Lc(X,n), there is an isomorphism of complexes

(11) RΓW,c(X,Z(n)) ∼= RHom(RΓ(Xét,Zc(n)),Z[−1]),

and an isomorphism of finite groups

H i
W,c(X,Z(n)) ∼= Hom(H2−i(Xét,Zc(n)),Q/Z)

∼= H i
c(Xét,Z(n))

∼= Hom(Hc
i−1(Xar,Z(n)),Q/Z),

where Hc
•(Xar,Z(n)) are the arithmetic homology groups defined in [13, §3].

Proof. Under our assumptions, X(C) = ∅, and therefore RΓc(GR, X(C),Z(n)) =

0, so that RΓW,c(X,Z(n)) ∼= RΓfg(X,Z(n)). Finally, by Proposition 5.4, we have an

isomorphism RΓfg(X,Z(n)) ∼= RHom(RΓ(Xét,Zc(n)),Z[−1]).
To relate this to Geisser’s arithmetic homology, according to [13, Theorem 3.1], there

is a long exact sequence

· · · → Hc
i−1(Xét,Z(n))→ Hc

i (Xar,Z(n))→ CHn(X, i− 2n)Q → Hc
i−2(Xét,Z(n))→ · · ·

Here the homological notation means that

Hc
i (Xét,Z(n)) = H−i(Xét,Zc(n)),

CHn(X, i− 2n)Q = Hc
i (Xét,Q(n)) = 0,

where the rational vanishing uses finiteness of H i(Xét,Zc(n)) for X over a finite field and

n < 0, assuming Lc(Xét, n) (Proposition 4.2).

Therefore,

Hc
i (Xar,Z(n)) ∼= H1−i(Xét,Zc(n)).

Now (11) gives

Ep,q
2 = ExtpZ(H

1−q(Xét,Zc(n)),Z) =⇒ Hp+q
W,c (X,Z(n)),

and again, by finiteness of H1−q(Xét,Zc(n)) under our assumptions, this spectral sequence

is concentrated in p = 1, where

Ext1Z(H
1−q(Xét,Zc(n)),Z) ∼= Hom(H1−q(Xét,Zc(n)),Q/Z),

so that

H1+i
W,c(X,Z(n)) ∼= Hom(H1−i(Xét,Zc(n)),Q/Z) ∼= Hom(Hc

i (Xar,Z(n)),Q/Z).
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Perfectness of the complex

Our next aim is to verify that RΓW,c(X,Z(n)) is a perfect complex. From now on we

tacitly assume Conjecture Lc(Xét, n) for n < 0.

Lemma 7.8. The groups H i
W,c(X,Z(n)) are finitely generated for all i ∈ Z.

Proof. In the long exact sequence

· · · → H i−1
c (GR, X(C),Z(n))→ H i

W,c(X,Z(n))→ H i
fg(X,Z(n))
Hi(i∗∞)−−−−→ H i

c(GR, X(C),Z(n))→ · · ·

the groupsH i
c(GR, X(C),Z(n)) andH i

fg(X,Z(n)) are finitely generated by Proposition 3.2,

and Proposition 5.5, respectively. This implies the finite generation of H i
W,c(X,Z(n)).

Lemma 7.9. One has H i
W,c(X,Z(n)) = 0 for i < 0.

Proof. The definitions of RΓfg(X,Z(n)) and RΓW,c(X,Z(n)) yield exact sequences

H i−1
c (GR, X(C),Z(n))

H i
W,c(X,Z(n))

H i
c(Xét,Z(n)) H i

fg(X,Z(n)) Hom(H1−i(Xét,Zc(n)),Q) H i+1
c (Xét,Z(n))

H i
c(GR, X(C),Z(n)).

If i < 0, thenH i
c(Xét,Z(n)) = H i

c(GR, X(C),Z(n)) = 0. Moreover, Hom(H1−i(Xét,Zc(n)),Q) =

0 for i < 0, since H1−i(Xét,Zc(n)) is finite 2-torsion (Proposition 4.2). We conclude that

H i
W,c(X,Z(n)) = H i

fg(X,Z(n)) = 0 for i < 0.

For the vanishing of H i
W,c(X,Z(n)) for i≫ 0, we first establish the following auxiliary

result.

Lemma 7.10. Let d = dimX. For each prime ℓ and i ≥ 2d we have

(12) H i
W,c(X,Z(n))⊗ Zℓ = Ĥ i

c(X[1/ℓ]ét,Zℓ(n)),

where the right-hand side is defined via lim←−r Ĥ
i
c(X[1/ℓ]ét, µ

⊗n
ℓr ).
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Proof. Consider the commutative diagram with distinguished rows and columns

[RΓ(Xét,Zc(n)),Q[−2]] RΓ̂c(Xét,Z(n)) RΓ̂fg(X,Z(n)) [+1]

[RΓ(Xét,Zc(n)),Q[−2]] RΓc(Xét,Z(n)) RΓfg(X,Z(n)) [+1]

0 RΓ̂c(GR, X(C),Z(n)) RΓ̂c(GR, X(C),Z(n)) 0

[RΓ(Xét,Zc(n)),Q[−1]] RΓ̂c(Xét,Z(n))[1] RΓ̂fg(X,Z(n))[1] [+2]

α̂X,n

id id

αX,n

û∗∞ î∗∞

id

α̂X,n[1]

Here û∗
∞ (resp. î∗∞) is defined as the composition of the canonical morphism u∗

∞ (resp.

i∗∞) with the projection to the Tate cohomology

π : RΓc(GR, X(C),Z(n))→ RΓ̂c(GR, X(C),Z(n)).

By Proposition 3.2, H i(π) is an isomorphism for i ≥ 2d − 1. Therefore, the five-lemma

applied to

RΓW,c(X,Z(n)) RΓfg(X,Z(n)) RΓc(GR, X(C),Z(n)) [+1]

RΓ̂fg(X,Z(n)) RΓfg(X,Z(n)) RΓ̂c(GR, X(C),Z(n)) [+1]

f

i∗∞

id π f [1]

î∗∞

shows that for i ≥ 2d holds

H i
W,c(X,Z(n)) ∼= Ĥ i

fg(X,Z(n)).

As in Corollary 5.8, we have for a prime ℓ

Ĥ i
fg(X,Z(n))⊗ Zℓ ∼= Ĥ i

c(X[1/ℓ]ét,Zℓ(n)).

Corollary 7.11. One has H i
W,c(X,Z(n)) = 0 for i > 2d+ 1.

Proof. It suffices to verify that H i
W,c(X,Z(n)) ⊗ Zℓ = 0 for each prime ℓ. Thanks

to the isomorphism (12), this reduces to Ĥ i
c(X[1/ℓ]ét,Zℓ(n)) = 0 for i > 2d + 1, which is

true for reasons of cohomological dimension [1, Exposé X, Théorème 6.2]. We note that

if ℓ = 2 and X(R) ̸= ∅, then the usual étale cohomology has finite 2-torsion in arbitrarily

high degrees. It is important that we consider here the modified cohomology with compact

support Ĥ i
c(−). To obtain the corresponding statement, combine the arguments from [1,

Exposé X] with the well-known computations of modified cohomology for number fields;

cf. [30, Chapter II] and [2], [29].



Weil-étale cohomology and duality for n < 0 26

Summarizing the above observations, we obtain the following result.

Proposition 7.12. Conjecture Lc(Xét, n) implies that RΓW,c(X,Z(n)) for n < 0

is a perfect complex. More precisely, H i
W,c(X,Z(n)) are finitely generated groups, and

H i
W,c(X,Z(n)) = 0 for i /∈ [0, 2 dimX + 1].

Rational coefficients

Proposition 7.13. Assuming Conjecture Lc(Xét, n), for n < 0, there is a non-

canonical splitting

RΓW,c(X,Z(n))⊗Q ∼= RHom(RΓ(Xét,Zc(n)),Q)[−1]⊕RΓc(GR, X(C),Q(n))[−1].

Proof. The distinguished triangle defining RΓW,c(X,Z(n)) becomes after tensoring

with Q

RΓW,c(X,Z(n))⊗Q→ RΓfg(X,Z(n))⊗Q i∗∞⊗Q=0−−−−−→ RΓc(GR, X(C),Z(n))⊗Q

→ RΓW,c(X,Z(n))⊗Q[1]

which yields a non-canonical splitting [37, Chapitre II, Corollaire 1.2.6]

RΓW,c(X,Z(n))⊗Q ∼= RΓfg(X,Z(n))⊗Q⊕RΓc(GR, X(C),Z(n))[−1]⊗Q,

and we have already established in Proposition 5.7 that

RΓfg(X,Z(n))⊗Q ∼= RHom(RΓ(Xét,Zc(n)),Q)[−1].

8 Known cases of Conjecture Lc(Xét, n)

Since the main constructions of this paper assume Conjecture Lc(Xét, n), we relate it

here to other conjectures about the finite generation of étale motivic cohomology formu-

lated in the literature, and also describe certain schemes X for which Lc(Xét, n) holds

unconditionally.

Instead of our Lc(Xét,−), Flach and Morin state in [8, §3] a slightly different conjecture
L(Xét,−). For proper regular X of pure dimension d, the following is a reformulation of

L(Xét, d− n) [8, Conjecture 3.2, Lemma 3.3] in terms of Zc(n).

Conjecture 8.1. For a proper regular arithmetic scheme X and n < 0, the groups

H i(Xét,Zc(n)) are finitely generated for i ≤ −2n+ 1.
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A more precise conjectural description of étale motivic cohomology is [15, Conjec-

ture 4.12], which can be written for Zc(n) as follows:

Conjecture 8.2. For a proper regular arithmetic scheme X and n < 0, one has

H i(Xét,Zc(n)) =


finitely generated, i ≤ −2n,

finite, i = −2n+ 1,

cofinite type, i ≥ −2n+ 2.

This is consistent with our Lc(Xét, n).

Proposition 8.3. Let X be a proper regular arithmetic scheme and n < 0. Then

Conjecture Lc(Xét, n), Conjecture 8.1, and Conjecture 8.2 are equivalent.

Proof. For the implication Conjecture 8.1 =⇒ Lc(Xét, n), by [8, Proposition 3.4],

Conjecture 8.1 implies Artin–Verdier duality

H i(Xét,Z(n)) ∼= Hom(H2−i(Xét,Zc(n)),Q/Z) up to finite 2-torsion,

hence H i(Xét,Zc(n)) is finite 2-torsion for i ≥ 2, and in particular for i > −2n+ 1.

The implication Conjecture 8.1 =⇒ Conjecture 8.2 is also established in [8, Proposi-

tion 3.4].

We now list some special cases where Conjecture Lc(Xét, n) is known, and therefore

gives unconditional results. We follow [32, §5] very closely. For an arithmetic scheme X,

we formulate the following conjecture, which is the conjunction of Lc(Xét, n) for all n < 0.

Conjecture 8.4. Lc(Xét): the cohomology groups H i(Xét,Zc(n)) are finitely gener-

ated for all i ∈ Z and n < 0.

This is similar to [32, Definition 5.8], with the only difference that Morin also requires

the finite generation of H i(Xét,Zc(0)) for i ≤ 0. Conjecture Lc(Xét) is known for number

rings, and also for certain varieties over finite fields. As in [35], [10], and [32], we consider

the following class.

Definition 8.5. Let A(Fq) be the full subcategory of the category of smooth pro-

jective varieties over a finite field Fq generated by products of curves and the following

operations.

1) If X and Y lie in A(Fq), then X ⊔ Y lies A(Fq).

2) If Y lies in A(Fq) and there are morphisms c : X → Y and c′ : Y → X in the category

of Chow motives such that c′ ◦ c : X → X is a multiplication by constant, then X

lies in A(Fq).
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3) If Fqm/Fq is a finite extension and XFm
q
= X ×SpecFq SpecFqm lies in A(Fqm), then

X lies in A(Fq).

4) If X and Y lie in A(Fq), and Y is a closed subscheme of X, then the blowup of X

along Y lies in A(Fq).

The following is similar to [32, Definition 5.9].

Definition 8.6. Let L(Z) be the full subcategory of arithmetic schemes generated

by the following objects:

• the empty scheme ∅,

• SpecOF for a number field F ,

• varieties X ∈ A(Fq) for any finite field Fq,

and the following operations.

L1) Let X be an arithmetic scheme, Z ⊂ X a closed subscheme and U := X \ Z its

open complement. If two of three schemes X,Z, U lie in L(Z), then the third also

lies in L(Z).

L2) A finite disjoint union X =
∐

1≤j≤pXj lies in L(Z) if and only if each Xj lies in

L(Z).

L3) If V → U is an affine bundle and U lies in L(Z), then V also lies in L(Z).

L4) If {Ui → X}i∈I is a finite surjective family of étale morphisms such that each Ui0,...,ip
lies in L(Z), then X also lies in L(Z).

Proposition 8.7. Conjecture Lc(Xét) holds for any arithmetic scheme X ∈ L(Z).

Proof. See the argument in [32, Proposition 5.10].

Finally, we consider cellular schemes, as in [32, §5.4].

Definition 8.8. Let Y be a separated scheme of finite type over Spec k for a field

k. We say that Y admits a cellular decomposition if there exists a filtration of Y by

reduced closed subschemes

Y red = YN ⊇ YN−1 ⊇ · · · ⊇ Y−1 = ∅

such that Yi \ Yi−1
∼= Ari

k is isomorphic to an affine space over k.
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We say that Y is geometrically cellular if Yk = Y ×Spec k Spec k admits a cellular

decomposition. This is equivalent to the existence of a finite Galois extension k′/k such

that Yk′ admits a cellular decomposition.

Finally, given an S-scheme X → S that is separated and of finite type, we say that

X is geometrically cellular over S if for each s ∈ S the corresponding fiber Xs is

geometrically cellular.

Proposition 8.9. Let Y be a separated scheme of finite type over SpecFq. If Y is

geometrically cellular, then X ∈ L(Z), and in particular Conjecture Lc(Yét) holds.

If X → SpecOF is a flat, separated scheme of finite type over the ring of integers of a

number field, and X is geometrically cellular over OF , then X ∈ L(Z), and in particular

Lc(Xét) holds.

For a proof, we refer to [32, Proposition 5.14].

9 Comparison with the complex of Flach and Morin

This paper is based on the ideas of Flach and Morin [8], who gave a similar construction

of Weil-étale cohomology RΓW,c(X,Z(n)) for a proper and regular arithmetic scheme X,

and for any integer weight n ∈ Z. In this section, we will go through the definitions of

[8], to verify the following claim.

Proposition 9.1. Let X be a proper, regular arithmetic scheme, and n < 0. Assume

Conjecture Lc(Xét, n). Then the Weil-étale complex RΓW,c(X,Z(n)) defined above in §7
is isomorphic to the corresponding complex defined in [8].

From now on we tacitly assume Conjecture Lc(Xét, n), which is also equivalent to the

assumptions on motivic cohomology in [8] (see Proposition 8.3). Flach and Morin consider

the case of a proper and regular arithmetic scheme X of equal dimension d. In this case,

we follow [8, Remark 3.11] to reformulate their constructions in terms of complexes Zc(n).
Moreover, they work with the Artin–Verdier étale topos X ét, whose definition and

basic properties can be found in [8, §6]. They consider a morphism

αX,n : RHom(RΓ(X,Zc(n)),Q[−2])→ RΓ(X ét,Z(n)),

defined in a similar way to our αX,n (Definition 5.1) using a duality similar to our Theo-

rem I.

The notation in [8] and in this paper is intentionally the same for various objects

and morphisms. However, in this section we will write, for example, αX,n to denote the

morphism of Flach and Morin, to distinguish it from our αX,n, etc. An overline indicates



Weil-étale cohomology and duality for n < 0 30

that the corresponding thing comes from [8] and has something to do with the Artin–

Verdier étale topos.

Lemma 9.2. The square

(13)

RHom(RΓ(X,Zc(n)),Q[−2]) RΓ(X ét,Z(n))

RHom(RΓ(X,Zc(n)),Q[−2]) RΓ(Xét,Z(n))

αX,n

id

αX,n

commutes.

Proof. We recall from Remark 5.2 that αX,n is determined by the maps at the level

of cohomology H i(αX,n). The same is true for αX,n, for the same reasons. Now [8,

Theorem 3.5] defines

H i(αX,n) : Hom(H2−i(X,Zc(n)),Q)
∼=−→ Hom(H2−i(X ét,Zc(n)),Q)→

Hom(H2−i(X ét,Zc(n)),Q/Z)
∼=←− H i(X ét,Z(n)),

where the last isomorphism is the duality [8, Corollary 6.26]. Similarly, our morphism

αX,n gives

H i(αX,n) : Hom(H2−i(X,Zc(n)),Q)
∼=−→ Hom(H2−i(Xét,Zc(n)),Q)→

Hom(H2−i(Xét,Zc(n)),Q/Z)
∼=←− Ĥ i

c(Xét,Z(n))→ H i(Xét,Z(n)).

The groups Ĥ i
c(Xét,Z(n)) and H i(X ét,Z(n)) are different, but the duality in terms

of H i(X ét,Z(n)) is compatible with the duality in terms of Ĥ i
c(Xét,Z(n)) (see [8, Theo-

rem 6.24]): we have a commutative diagram

RΓ̂c(Xét,Z/mZ(n)) RHom(RΓ(Xét,Z/mZc(n)),Q/Z[−2])

RΓ(X ét,Z/mZ(n)) RHom(RΓ(X ét,Z/mZc(n)),Q/Z[−2])

∼=

∼=

and the diagram

RΓ̂c(Xét,Z(n)) RΓ(Xét,Z(n))

RΓ(X ét,Z(n)
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commutes as well. We see that the diagram we are interested in commutes:

Hom(H2−i(X,Zc(n)),Q) H2−i(X ét,Zc(n))D H i(X ét,Z(n))

Hom(H2−i(X,Zc(n)),Q) H2−i(Xét,Zc(n))D Ĥ i
c(Xét,Z(n)) H i(Xét,Z(n))

id

Hi(αX,n)

∼=

Hi(αX,n)

∼=

For brevity, Hom(A,Q/Z) is denoted here by AD.

Taking the cones of αX,n and αX,n, we obtain respectively the complex RΓW (X,Z(n))
of Flach and Morin [8, Definition 3.6] and our complex RΓfg(X,Z(n)) (Definition 5.1

above).

The square (13) induces the following diagram with distinguished rows and columns

(cf. [33, Proposition 1.4.6]):

(14)

[RΓ(X,Zc(n)),Q[−2]] RΓ(X ét,Z(n)) RΓW (X,Z(n)) [−1]

[RΓ(X,Zc(n)),Q[−2]] RΓ(Xét,Z(n)) RΓfg(X,Z(n)) [−1]

0 RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) 0

[RΓ(X,Zc(n)),Q[−1]] RΓ(X ét,Z(n))[1] RΓW (X,Z(n))[1] [0]

αX,n

id

f

id

αX,n g

id

f [1]

Then [8, Definition 3.23] considers a morphism u∗
∞ defined via

(15)

RΓ(X ét,Z(n)) RΓ(Xét,Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

RΓW (X∞,Z(n)) RΓ(GR, X(C),Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

∃ u∗∞ u∗∞ id u∗∞[1]

Here the complex RΓW (X∞,Z(n)) is defined via the bottom triangle.

Then [8, Proposition 3.24] and our Proposition 7.3 above establish the existence and

uniqueness of morphisms ι∗∞ and i∗∞ which make the triangles below commutative, and

then the Weil-étale complexes are defined as mapping fibers of ι∗∞ and i∗∞:
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RΓW,c(X,Z(n)) RΓW,c(X,Z(n))

RΓW (X,Z(n)) RΓ(X ét,Z(n)) RΓfg(X,Z(n)) RΓ(Xét,Z(n))

RΓW (X∞,Z(n)) RΓ(GR, X(C),Z(n))

RΓW,c(X,Z(n))[1] RΓW,c(X,Z(n))[1]

ι∗∞
u∗∞

f

ι∗∞
u∗∞

g

In order to compare the two resulting complexes, we note that u∗
∞ is only defined via

(15), so in the diagram below from Figure 1, we can first choose ι∗∞ such that the front

face gives a morphism of triangles. Then we can declare u∗
∞ to be the composition ι∗∞ ◦ f .

In this way everything commutes, and we see that RΓW,c(X,Z(n)) ∼= RΓW,c(X,Z(n)).

This concludes the proof of Proposition 9.1.
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RΓW,c(X,Z(n)) RΓW,c(X,Z(n)) 0 [+1]

RΓ(X ét,Z(n)) RΓ(Xét,Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

RΓW (X,Z(n)) RΓfg(X,Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

RΓW (X∞,Z(n)) RΓ(GR, X(C),Z(n)) RΓ(X(R), τ≥n+1Rπ̂∗Z(n)) [+1]

RΓW,c(X,Z(n))[1] RΓW,c(X,Z(n))[1] 0 [+2]

∼=

u∗∞

f

u∗∞

g id

id

u∗∞[1]

f [1]

ι∗∞ i∗∞ id ι∗∞[1]

∼=

Figure 1: Comparison of the Weil-étale complexes from [8] and this paper, denoted RΓW,c(X,Z(n)) and RΓW,c(X,Z(n)) respec-
tively. The top face of the prism comes from (14). The arrow ι∗∞ is chosen so that the front face is commutative. Then set

u∗
∞ = ι∗∞ ◦ f so that the back face is commutative and corresponds to (15).



Weil-étale cohomology and duality for n < 0 34

A Some homological algebra

This appendix contains some basic results about the derived category of abelian groups

D(Z) which are used throughout the text. The following lemmas are isolated from the

proofs in [8], with some modifications to treat the 2-torsion.

First, recall that every complex of abelian groups A• (not necessarily bounded) is

quasi-isomorphic to its cohomology:

A• ∼=
∐
i∈Z

H i(A•)[−i] ∼=
∏
i∈Z

H i(A•)[−i]

=
(
· · · → H i−1(A•)

0−→ H i(A•)
0−→ H i+1(A•)→ · · ·

)
.

Here
∐

i∈ZH
i(A•)[−i] ∼=

∏
i∈ZH

i(A•)[−i] is the complex that has H i(A•) in i-th degree,

which serves as both product and coproduct of complexes H i(A•)[−i] concentrated in i-th

degree. This gives us a useful expression for morphisms in the derived category: since

HomD(Z)(A,B[i]) ∼= ExtiZ(A,B), and ExtiZ(A,B) = 0 for i > 1, we obtain

HomD(Z)(A
•, B•) ∼= HomD(Z)(

∐
i∈Z

H i(A•)[−i],
∏
j∈Z

Hj(B•)[−j])

∼=
∏
i∈Z

∏
j∈Z

HomD(Z)(H
i(A•), Hj(B•)[i− j])

∼=
∏
i∈Z

(
Hom(H i(A•), H i(B•))⊕ Ext(H i(A•), H i−1(B•))

)
∼=
∏
i∈Z

Hom(H i(A•), H i(B•))⊕
∏
i∈Z

Ext(H i(A•), H i−1(B•)).(16)

Lemma A.1.

1) If C• and C ′• are almost perfect in the sense of Definition 1.1, then the group

HomD(Z)(C
•, C ′•) has no nontrivial divisible subgroups.

2) If A• is a complex such that H i(A•) are finite-dimensional Q-vector spaces and C•

is a complex such that H i(C•) are finitely generated abelian groups, then the group

HomD(Z)(A
•, C•) is divisible.

Proof. In 1), if C• and C ′• are almost perfect, then Hom(H i(C•), H i(C ′•)) are finitely

generated groups, 2-torsion for i≫ 0. Writing H i(C•) ∼= Z⊕r⊕G, H i−1(C ′•) ∼= Z⊕r′ ⊕G′

for some r, r′ and finite groups G,G′, we calculate that

Ext(Z⊕r ⊕G,Z⊕r′ ⊕G′) ∼= Ext(G,Z)︸ ︷︷ ︸
∼=G

⊕r′ ⊕ Ext(G,G′)
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are finite groups, 2-torsion for i≫ 0. It follows from (16) that HomD(Z)(C
•, C ′•) is a sum

of a finitely generated group and a 2-torsion group, so it cannot have nontrivial divisible

subgroups.

Similarly in 2), under our assumption, Hom(H i(A•), H i(C•)) = 0 for all i, and the

calculation

Ext(Q⊕r,Z⊕s ⊕G) ∼= Ext(Q,Z)⊕rs ⊕ Ext(Q, G)︸ ︷︷ ︸
=0

⊕r

shows that HomD(Z)(A
•, C•) is a direct product of divisible groups Ext(Q,Z), hence di-

visible.

Recall that Verdier’s axiom (TR1) states that every morphism v : A• → B• can be

completed to a distinguished triangle A• u−→ B• v−→ C• w−→ A•[1]. Axiom (TR3) states that

for every commutative diagram with distinguished rows

(17)

A• B• C• A•[1]

A′• B′• C ′• A′•[1]

u

f

v

g

w

u′ v′ w′

there exists some h : C• → C ′•, which gives a morphism of distinguished triangles

(18)

A• B• C• A•[1]

A′• B′• C ′• A′•[1]

u

f

v

g

w

∃h f [1]

u′ v′ w′

The cone C• in (TR1) and the morphism h in (TR3) are neither unique nor canonical.

Two different cones of the same morphism are necessarily isomorphic, but the isomorphism

between them is not unique, because it is provided by (TR3). Let us recall a useful

argument showing that things are well-defined in some special cases.

Lemma A.2 (≈[3, Proposition 1.1.9, Corollaire 1.1.10]). Consider the derived category

D(A) of an abelian category A.

1) For a commutative diagram (17), assume that the homomorphism of abelian groups

w∗ : HomD(A)(A
•[1], C ′•)→ HomD(A)(C

•, C ′•)

induced by w is trivial. Then there exists a unique morphism h : C• → C ′• that gives

a morphism of triangles (18).

2) For a distinguished triangle A• u−→ B• v−→ C• w−→ A•[1], assume that for any other

cone C ′• of u the morphism w∗ is trivial. Then the cone of u is unique up to a

unique isomorphism.
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Proof. In 1), applying HomD(A)(−, C ′•) to the first distinguished triangle, we obtain

an exact sequence of abelian groups

HomD(A)(A
•[1], C ′•)

w∗
−→ HomD(A)(C

•, C ′•)
v∗−→ HomD(A)(B

•, C ′•).

If w∗ = 0, we conclude that v∗ is a monomorphism. This implies that there is a unique

morphism h such that h ◦ v = v′ ◦ g. Now in 2), if C• and C ′• are two different cones of

u, we have a commutative diagram

A• B• C• A•[1]

A• B• C ′• A•[1]

u

id

v

id

w

id

u′ v′ w′

By the triangulated five-lemma, the dashed arrow is an isomorphism, and it is unique

thanks to part 1).

Here is a special case that we need.

Corollary A.3. Consider the derived category D(Z).

1) Suppose we have a commutative diagram with distinguished rows (17), where A• is

a complex such that H i(A•) are finite-dimensional Q-vector spaces and C•, C ′• are

almost perfect complexes in the sense of Definition 1.1. Then there exists a unique

morphism h : C• → C ′• which gives a morphism of triangles (18).

2) For a distinguished triangle

A• u−→ B• v−→ C• w−→ A•[1]

assume that A• is a complex such that H i(A•) are finite-dimensional Q-vector spaces

and C• is an almost perfect complex. Then the cone of u is unique up to a unique

isomorphism.

Proof. In this situation, by Lemma A.1, the group HomD(Z)(C
•, C ′•) has no non-

trivial divisible subgroups, and HomD(Z)(A
•[1], C ′•) is divisible. This means that there

are no nontrivial homomorphisms HomD(Z)(A
•[1], C ′•) → HomD(Z)(C

•, C ′•), and we can

apply Lemma A.2.

Lemma A.4. Suppose that A• and B• are almost of cofinite type in the sense of Defi-

nition 1.1. Then a morphism f : A• → B• is torsion (i.e. a torsion element in the group

HomD(Z)(A
•, B•), i.e. f ⊗Q = 0) if and only if the morphisms H i(f) : H i(A•)→ H i(B•)

are torsion; that is, they are trivial on the maximal divisible subgroups:

(H i(f)div : H
i(A•)div → H i(B•)div) = 0.
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Proof. We may write H i(A•) ∼= (Q/Z)⊕r ⊕ G and H i−1(B•) ∼= (Q/Z)⊕s ⊕ H for

some r, s and some finite groups G,H. Now

Ext((Q/Z)⊕r ⊕G, (Q/Z)⊕s ⊕H) ∼= Ext(Q/Z, H)︸ ︷︷ ︸
∼=H

⊕r ⊕ Ext(G,H)

is a finite group. It follows that tensoring (16) with Q kills
∏

i∈Z Ext(H
i(A•), H i−1(B•))

and gives an isomorphism

HomD(Z)(A
•, B•)⊗Q ∼=

∏
i∈Z

Hom(H i(A•), H i(B•))⊗Q,

f ⊗Q 7→ (H i(f)⊗Q)i∈Z.

Lemma A.5. If A• is a complex of Q-vector spaces and B• is a complex almost of

cofinite type in the sense of Definition 1.1, then there is an isomorphism of abelian groups

HomD(Z)(A
•, B•)

∼=−→
∏
i∈Z

Hom(H i(A•), H i(B•)),

f 7→ (H i(f))i∈Z.

Proof. If H i(A•) are Q-vector spaces and H i−1(B•) are groups of cofinite type, then

the term Ext(H i(A•), H i−1(B•)) in the formula (16) vanishes by calculations similar to

the above, as Ext(Q,Q/Z) = Ext(Q, G) = 0 for finite G.

B Cohomology with compact support

For any arithmetic scheme f : X → SpecZ there exists a Nagata compactification

[6, 7] (see also [1, Exposé XVII])

X X

SpecZ

j

f g

where j is an open immersion and g is a proper morphism.

Definition B.1. Let X be an arithmetic scheme and let F be an abelian torsion

sheaf on Xét. Then one defines the cohomology with compact support of F via the

complex

RΓc(Xét,F) := RΓ(Xét, j!F).

For torsion sheaves, this does not depend on the choice of j : X ↪→ X, but here we

would like to fix this choice in order to compare cohomology with compact support on

Xét with the singular cohomology with compact support on X(C).
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Comparison with the analytic cohomology

Definition B.2. Given a Nagata compactification j : X ↪→ X, we consider the corre-

sponding open immersion j(C) : X(C)→ X(C), and for a sheaf F on X(C) we define

Γc(X(C),F) := Γ(X(C), j(C)!F).

Similarly, for a GR-equivariant sheaf on X(C) we define

Γc(GR, X(C),F) := Γ(GR,X(C), j(C)!F).

The canonical reference for the comparison between étale and singular cohomology is

[1, Exposé XI, §4], so we borrow some definitions and notations from there. Let X be an

arithmetic scheme.

1. The base change from SpecZ to SpecC gives us a morphism of sites

γ : XC,ét → Xét.

2. Let Xcl be the site of étale maps f : U → X(C). A covering family in Xcl is a family

of maps {Ui → U} such that U is the union of images of Ui.

(We recall that in the analytic topology, f : U → X(C) is étale if it is a local on the

source homeomorphism: for each u ∈ U there exists an open neighborhood u ∋ V

such that f |V : V → f(V ) is a homeomorphism.)

Since the inclusion of an open subset U ⊂ X(C) is an étale map, we have a fully

faithful functor X(C) ⊂ Xcl, and the topology on X(C) is induced by the topology

on Xcl. This gives us a morphism of sites δ : Xcl → X(C), which by the comparison

lemma [1, Exposé III, Théorème 4.1] induces an equivalence of the corresponding

categories of sheaves

δ∗ : Sh(Xcl)→ Sh(X(C)).

3. A morphism of schemes f : X ′
C → XC over SpecC is étale if and only if the map

f(C) : X ′(C) → X(C) is étale [19, Exposé XII, Proposition 3.1], and therefore the

functor X ′
C ⇝ X ′(C) gives us a morphism of sites

ϵ : Xcl → XC,ét.

Definition B.3. We define the functor

α∗ : Sh(Xét)→ Sh(GR, X(C))

via the composition

Sh(Xét) Sh(XC,ét) Sh(Xcl) Sh(X(C))γ∗ ϵ∗ δ∗
≃
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As we start from a scheme over SpecZ and base change to SpecC, the resulting

sheaf on X(C) is equivariant with respect to the complex conjugation, hence an object in

Sh(GR, X(C)). For the definition of equivariant sheaves, we refer to the introduction.

Lemma B.4. α∗ preserves colimits.

Proof. α∗ is the composition of the inverse image functors γ∗ and ϵ∗ (which are left

adjoint) and an equivalence δ∗.

Proposition B.5. Given a sheaf F on Xét, there exists a natural morphism

Γ(Xét,F)→ Γ(GR, X(C), α∗F),

and similarly, for cohomology with compact support,

Γc(Xét,F)→ Γc(GR, X(C), α∗F).

Proof. If j : X ↪→ X is a Nagata compactification, we have the corresponding com-

pactification j(C) : X(C) ↪→ X(C). The extension by zero morphism j(C)! : Sh(X(C))→
Sh(X(C)) restricts to the subcategory of GR-equivariant sheaves: if F is a GR-equivariant

sheaf on X(C), then j(C)!F is a GR-equivariant sheaf on X(C). From the definition of

α∗, we see that that there is a commutative diagram

Sh(Xét) Sh(GR, X(C))

Sh(Xét) Sh(GR,X(C))

α∗

j! j(C)!

α∗
X

—this diagram commutes for representable étale sheaves, and then every étale sheaf is a

colimit of representable sheaves, and α∗, j!, α
∗
X, j(C)! preserve colimits, as left adjoints.

The morphism in question is given by

Γc(Xét,F) := Γ(Xét, j!F)→ Γ(GR,X(C), α∗
Xj!F)

= Γ(GR,X(C), j(C)! α∗F) =: Γc(GR, X(C), α∗F).

The morphism α is also discussed in [8, Appendix A], but Flach and Morin work

with proper schemes; the above remarks are to make sure that everything works fine for

compactifications.
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Modified étale cohomology

Here we briefly review the modified étale cohomology with compact support

RΓ̂c(Xét,−). It was introduced by Th. Zink in [20, Appendix 2] for the case of num-

ber rings X = SpecOK,S, and it is also discussed in [30, §II.2]. The general definition for

X → SpecZ is treated in [8, §6.7] and [16, §2].
Thanks to the Leray spectral sequence RΓ(Xét,−) ∼= RΓ(SpecZét,−) ◦Rg∗, we have

RΓc(Xét,F) := RΓ(Xét, j!F) ∼= RΓ((SpecZ)ét, Rf!F), where Rf!F := Rg∗j!F .

First we recall that for a finite group G and a G-module A the corresponding group

cohomology H i(G,A) (resp. Tate cohomology Ĥ i(G,A)) can be defined in terms of res-

olutions P• (resp. complete resolutions P̂•) of Z by free ZG-modules (see e.g. [5, Chap-

ter VI]). More generally, if A• is a bounded (cohomological) complex of G-modules, we

obtain a double complex of abelian groups Hom••(P•, A
•) (resp. Hom••(P̂•, A

•)), and it

makes sense to define the corresponding group hypercohomology (resp. Tate hyper-

cohomology) via the complexes

RΓ(G,A•) := Tot⊕(Hom••(P•, A
•)), RΓ̂(G,A•) := Tot⊕(Hom••(P̂•, A

•)).

Now if F is an abelian sheaf on (SpecZ)ét, then the corresponding modified coho-

mology with compact support is characterized by the distinguished triangle

RΓ̂c((SpecZ)ét,F)→ RΓ((SpecZ)ét,F)→ RΓ̂(GR, v
∗F)→ RΓ̂c((SpecZ)ét,F)[1].

Here v : SpecR → SpecZ is the canonical morphism, and v∗F is the corresponding

sheaf on (SpecR)ét, which can be viewed as a GR-module by [1, Exposé VII, 2.3], and

RΓ̂(GR, v
∗F) denotes the corresponding Tate cohomology.

In general, given an arithmetic scheme X → SpecZ and a torsion abelian sheaf F on

Xét, we choose a Nagata compactification as above and set

RΓ̂c(Xét,F) := RΓ̂c((SpecZ)ét, Rf!F).

We have a natural morphism

RΓ̂c(Xét,F)→ RΓc(Xét,F),

which is an isomorphism if X(R) = ∅. In general, Tate cohomology Ĥ i(GR,−) is annihi-
lated by multiplication by 2 = #GR, and therefore Ĥ i

c(Xét,F)→ H i
c(Xét,F) has 2-torsion

kernel and cokernel.

For canonicity and functoriality, I refer to [16, §2].
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Séminaire de géométrie algébrique du Bois-Marie 1967–69 (SGA 7): Groupes de
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