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Abstract

Flach and Morin [§] constructed Weil-étale cohomology H ZW (X, Z(n)) for a
proper, regular arithmetic scheme X (i.e. separated and of finite type over SpecZ)
and n € Z. In the case when n < 0, we generalize their construction to an ar-
bitrary arithmetic scheme X, thus removing the proper and regular assumption.
The construction uses étale motivic cohomology groups H*(X 4, Z¢(n)), defined via
Bloch cycle complexes [4], which were studied by Geisser [14] in the context of
arithmetic duality theorems. It assumes their finite generation for n < 0. We give a
class of X for which finite generation is known, and hence H ZW, (X, Z(n)) is defined

unconditionally.

1 Introduction

Lichtenbaum, in a series of papers [24] 25| 26], has envisioned a new cohomology theory for
schemes, known as Weil-étale cohomology. The case of varieties over finite fields X/F,
was further studied by Geisser [10] 12, 13]. Morin defined in [32] Weil-étale cohomology
with compact support H ZW’C(X ,Z) for X — SpecZ separated, of finite type, proper, and
regular. This construction was further generalized by Flach and Morin in [8] to the groups
Hiy (X, Z(n)) with arbitrary weights n € Z, under the same assumptions on X.

The aim of this paper is to remove the assumption that X is proper and regular and,
following the ideas of [8], to construct the groups HYy (X, Z(n)) for any X separated and
of finite type over SpecZ for the case of strictly negative weights n < 0.
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Weil-étale cohomology and duality for n < 0 2

As Flach and Morin already suggest in [8, Remark 3.11], we rework all their construc-
tions in terms of Z¢(n), which is a variant of Bloch’s cycle complexes [4, [I1], considered
by Geisser in [I4] in the context of arithmetic duality theorems.

In a forthcoming paper we apply the results of this text to relate the cohomology
groups Hyy, (X, Z(n)) to the special value of the zeta function ((X,s) at s =n < 0.

Notation and conventions

Arithmetic schemes. In this work, an arithmetic scheme is a scheme X that is

separated and of finite type over SpecZ.

Abelian groups. Let A be an abelian group. For m > 1 we denote by ,, A its m-torsion
subgroup, and by A,, the quotient A/mA:

0>, A=A A A, —0.

We denote by Ag, (resp. Ayyr) the maximal divisible subgroup (resp. maximal torsion
subgroup), and by Ay the quotient A/A,,,. (following the notation in [g]).

We say that A is of cofinite type if it is Q/Z-dual to a finitely generated abelian
group: A = Hom(B,Q/Z) for a finitely generated B.

Complexes. All our constructions take place in the derived category of abelian groups
D(Z). For our purposes, we introduce the following terminology. Recall first that a
complex of abelian groups A® is perfect if it is bounded (i.e. H'(A*) = 0 for |i| > 0),
and H'(A®) are finitely generated abelian groups.

DEFINITION 1.1. A complex of abelian groups A® is almost perfect if the cohomology
groups H'(A®) are finitely generated, and bounded, except for possible finite 2-torsion in
arbitrarily high degree. That is, H(A®) = 0 for i < 0 and H'(A®) is finite 2-torsion for
1> 0.

A complex of abelian groups A*® is of cofinite type if the cohomology groups H'(A®)
are of cofinite type and bounded.

A complex of abelian groups A*® is almost of cofinite type if the cohomology groups
H(A®) are of cofinite type and bounded, except for possible finite 2-torsion in arbitrarily
high degree.

This terminology is ad hoc and was invented for this text, since such complexes will
appear frequently. Some basic observations about almost perfect and almost cofinite type
complexes are collected in Appendix [A] We note that this finite 2-torsion in arbitrarily

high degrees could be removed by working with the Artin—Verdier topology X instead
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of the usual étale topology X. The general construction and basic properties of X ¢ are
treated in [8, Appendix A], but only for a proper and regular arithmetic scheme X. Our

methods circumvent this restriction at the cost of some technical hurdles with 2-torsion.

Etale cohomology. For an arithmetic scheme X and a complex of étale sheaves F*,
we denote by
RT (X4, F*) (resp. RTo(Xg, F*), RU(Xa, F*))

the complex that computes the corresponding cohomology, resp. cohomology with com-
pact support, and modified cohomology with compact support. For the convenience of
the reader, we review the definitions in Appendix . The purpose of Rfc(Xét, F*) is
to take care of real places X(R). There exists a canonical projection Rfc<Xe’t, F*) —
RT (X4, F*), which is an isomorphism if X (R) = 0.

G-equivariant sheaves and their cohomology. Let X be a topological space with
an action of a discrete group G. A G-equivariant sheaf F on X can be defined as an
espace étalé m: F — X with a G-action on F such that the projection 7 is G-equivariant
(see e.g. [28, §I1.6 + pp.594]). We denote by Sh(G, X') the corresponding category.

The equivariant global sections are defined by
I(G,X,F)=F(X)°,

with G acting on F(X) = {s: X — F | mos = idx} via (g-s)(x) = g-s(g7" - x).
The corresponding G-equivariant cohomology is given by the right derived functors of
G, x,—).

More details on G-equivariant sheaves can be found in [31, Chapitre 2]. For our modest
purposes, it suffices to know that any G-module A gives rise to the corresponding abelian
G-equivariant constant sheaf. The latter corresponds to the espace étalé X x A — X,

where A is endowed with the discrete topology.

Gr-equivariant cohomology of X (C). Given an arithmetic scheme X, we denote by
X (C) the set of complex points of X endowed with the analytic topology. It carries the
natural action of the Galois group G := Gal(C/R).

We consider the Gr-modules

Z(n) = 2mi)"Z, Q(n):=27)"Q, Q/Z(n):=Q(n)/Z(n)

as constant Gg-equivariant sheaves on X (C).
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Then RI'.(X(C), A(n)) for A = Z,Q,Q/Z (the complex that computes singular co-
homology with compact support of X (C) with coefficients in A(n)) is a complex of Gg-

modules, and we can further take the group cohomology (resp. Tate cohomology):

RT'.(Gr, X(C), A(n)) := RT(Gg, RT(X(C), A(n))),
RT.(Gg, X(C), A(n)) := RT(Gg, RT.(X(C), A(n))).

By definition, this is the Gr-equivariant cohomology (resp. Gg-equivariant Tate

cohomology) with compact support of X(C) with coefficients in A(n).

Motivic cohomology H' (X4, Z(n)). Our construction is based on motivic cohomol-
ogy defined in terms of complexes of sheaves Z°(n) on X4. The definition goes back to
Bloch [4]; see [11] for a survey. We follow the notation of [I4] for Z¢(n).

For ¢ > 0 we consider the algebraic simplex
A" = SpecZlto, ..., /() _ti — 1),

We fix a non-positive weight n < 0. Let z,(X, i) be the free abelian group generated by the
closed integral subschemes Z C X x A of dimension n+1 that intersect the faces properly.
Then z,(X, e) is a (homological) complex of abelian groups whose differentials are given
by the alternating sum of intersections with the faces. We consider the (cohomological)
complex of étale sheaves

Z°(n) == z,(o, —e)[2n].

The boundedness from below of Z¢(n) is not known in general; it is a variant of the
Beilinson—Soulé vanishing conjecture. To work unconditionally with the derived functors,
we use K-injective resolutions [36], B4] (resp. K-flat resolutions for the derived tensor
products).

To avoid any confusion, we use cohomological numbering for all complexes in this
paper, so we set

H'(X4,7(n)) := H(RT' (X4, Z¢(n))).

([14] uses homological numbering.)

Assumptions

Weights. In this paper, n normally denotes a strictly negative integer, which will be the
weight in the cohomology groups HYy (X, Z(n)). The results in §3/on cohomology of X (C)
apply for any weight n € Z; all other results regarding cohomology groups H'(X 4, Z¢(n)),
H} (X, Z(n)), Hy (X, Z(n)) apply for n < 0.
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Finite generation conjecture. Our construction of the Weil-étale cohomology groups

Hiy (X, Z(n)) uses the following assumption.

CONJECTURE 1.2. L¢(X4,n): for an arithmetic scheme X and n < 0, the cohomology
groups H'(X g, Z°(n)) are finitely generated for all i € 7Z.

See Proposition for consistency of L¢(X ¢, n) with other conjectures that appear in

the literature. We refer to §§ for the cases where the conjecture is known.

Main results

Here we state the main results of this paper that are needed for the construction of Weil-
étale cohomology. One of our main objects is the following complex of abelian sheaves
Z(n) on Xg.

DEFINITION 1.3 ([8, §3.1], [10, §7]). Let X be an arithmetic scheme and n < 0. For a
prime p, consider the localization X[1/p|, and let j,» be the sheaf of p"-th roots of unity
on X[1/p]. We define the twist of y,» by n as

S = Homypy o (1™, Z/p"Z).

Now Z(n) is the complex of sheaves on X, given by

Z(n) = Q/Z(m)[~1],  where Q/Z(n) = D liny

p

and j, is the canonical open immersion X[1/p] — X.

The above sheaves Z(n) should not be confused with cycle complexes; the latter are
Z¢(n) in the context of this paper. In We prove the following arithmetic duality theorem

relating the two.
Theorem I. Assuming Conjecture L°(X g, n), for n <0, there is a quasi-isomorphism
RT.(X 4, Z(n)) = RHom(RD(X 4, Z(n)), Q/Z[—2)).
The second result is related to the following morphism of complexes.

DEFINITION 1.4. We define v’ : RI'.(X4, Q/Z(n)) — RI'.(Ggr, X(C),Q/Z(n)) as the
morphism in the derived category D(Z) induced by the comparison of étale and analytic

topology

Fe(Xa, Q/Z(n)) = Te(Gr, X(C),a"Q/Z(n)) = I'e(Gr, X (C), Q/Z(n))
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(see Proposition and [6.1)). Then we let uf,: RT.(X 4, Z(n)) — RL.(Gr, X(C),Z(n))

be the composition

v (1]

R (X g, Z(n)) == RT'.(Xg, Q/Z(n))[—1] = RI'.(Ggr, X(C),Q/Z(n))[—1]

— RI'.(Ggr, X(C),Z(n))

where the last arrow is induced by Q/Z(n)[—1] — Z(n), which comes from the distin-
guished triangle of constant Gr-equivariant sheaves Z(n) — Q(n) — Q/Z(n) — Z(n)[1].

Theorem I1. Assuming Conjecture L¢(X 4, n), forn <0, the morphism u?,: RU (X, Z(n)) —

RT.(Ggr, X(C),Z(n)) is torsion, i.e. there exists a nonzero integer m such that mu’, =0

Outline of the paper

Here we describe the structure of this paper, as well as our construction of the Weil-étale
complexes RI'y (X, Z(n)).

First, §2]is devoted to the proof of Theorem I} Some of its consequences are deduced in
Namely, if we assume Conjecture L¢(X ¢, n), then RI'(X g, Z¢(n)) is an almost perfect
complex, while RI'.(X ¢, Z(n)) is almost of cofinite type in the sense of Definition[1.1] For
this, we first make a small digression in §3| to analyze what kind of complexes we obtain
for the Gg-equivariant cohomology of X (C).

Theorem [l is used in §5| to define a morphism ax , in the derived category (see Defi-
nition [5.1)), and declare RI'y(X,Z(n)) to be its cone:

RHom(RT (X, Z°(n)), Q[—2]) = RT (X, Z(n)) — RT(X, Z(n))
— RHom(RT (X, Z°(n)), Q[—1]).

The notation “f¢g” comes from the fact that RI';,(X,Z(n)) is an almost perfect complex
in the sense of Definition [1.1, Thanks to specific properties of the complexes involved,
it turns out that RI'j(X,Z(n)) is defined up to a unique isomorphism in the derived
category (which is not normally expected from a cone).

Then in §6 we establish Theorem [T} and it is used in §7]to define Weil-étale complexes
RT'w,.(X,Z(n)). To do this, we deduce from Theorem [ that w} oax , = 0, which implies

that there exists a morphism in the derived category
it RT'1y(X,Z(n)) = RI'.(Ggr, X(C),Z(n)).

We choose a mapping fiber of % and call it RI'w (X, Z(n)), which turns out to be
a perfect complex. The definition of RI'w (X, Z(n)) fits in the following commutative
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diagram with distinguished triangles in the derived category D(Z):

RHom(RT(X &, Z°(n)), Q[~2]) — 0

Dfn. B.1l| X ,n

RT.(X4, Z(n)) oz AT e(Gr. X(C), Z(n))

id

~ ~

RT'w,o(X,Z(n)) — RI'y(X,Z(n)) —l;;f-> RT.(Gr, X(C),Z(n)) — RT'w,.(X,Z(n))[1]

A ~

RHom(RF(Xét:ZC(n)), Q[-1]) —— 0

The resulting complex is the same as defined in [§] if X is proper and regular.

In §8 we consider the cases of X for which Conjecture L¢(X g, n) is known, and hence
our results hold unconditionally, and in §9| we verify that if X is proper and regular, our
complex RI'w .(X,Z(n)) is isomorphic to that constructed in [§] by Flach and Morin.

There are two appendices to this paper: Appendix [A]collects some lemmas from homo-
logical algebra, and Appendix [B] gives an overview of the definitions of étale cohomology
with compact support RI'.(X4, —) and its modified version RfC(X éty—)-

This work is inspired by [§]. Here is a brief comparison between the notation and

assumptions.
this paper Flach—Morin
X — SpecZ X — SpecZ
separated, of finite type proper, regular, equidimensional
n <0 n ez
cycle complexes cycle complexes
Z¢(n) Z(d —n)[2d], d = dim X
RLyy(X, Z(n)) . .
up to finite 2-torsion
RT'w (X, Z(n)) RT w (X, Z(n))
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2 Proof of Theorem 1

At the heart of our constructions is an arithmetic duality theorem for cycle complexes
established by Geisser in [14]. The purpose of this section is to deduce Theorem |[I| from

Geisser’s duality. We would like to obtain a quasi-isomorphism of complexes
RT.(X4, Z(n)) = RHom(RI(X 4, Z(n)), Q/Z[—2)).

Here Rfc(Xét,Z(n)) denotes the modified étale cohomology with compact support,
described in Appendix . We note that [14] uses the notation “RI’.” for our “Rfc”, but
we take special care to distinguish the two things, since we also need the usual étale
cohomology with compact support RI'.(X¢, Z(n)).

We split our proof of Theorem [[|into two propositions.

PROPOSITION 2.1. For any n < 0 we have a quasi-isomorphism of complexes

~

(1) R (X, Z(n)) 2 lig RHom(RT (X, Z/mZ<(n)), Q/Z[~2).

PrOOF. We unwind our definition of Z(n) for n < 0 and reduce everything to the
results from [14]. Since Z(n) := P, lim pis[—1], and étale cohomology commutes with
filtered colimits of coefficients, it suffices to show that for every prime p and r > 1 there

is a quasi-isomorphism of complexes

~

(2) RTo(X e, oy’ [—1]) = RHom(RT (X g, Z°/p"(n)), Q/Z[-2]).

As in Definition [1.3] here j, denotes the canonical open immersion j,: X[1/p] — X.
We further denote by f the structure morphism X — SpecZ and by f, the structure
morphism X [1/p] — SpecZ[1/p]:

X[1/p] —— X

S

SpecZ[1/p] —— SpecZ
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As we are going to change the base scheme, let us write Homx(—, —) for the Hom
between sheaves on X and Hom y (—, —) for the internal Hom. Instead of Homgpe g, we
will simply write Hompg.

Applying various results from [9] and [14], we obtain a quasi-isomorphism of complexes

of sheaves
RHom x (jip " [—1], 2% (0)) =
= RjpRHom ;1) (1" [=1], Z1/,:(0)) [14, Prop. 7.10 c)]
= Rjp. RHom (1 (fo i [ 1], Z (15 (0))
= Rjp. R f, RHomy, ) (115" =1, 2511, (0)) [14, Prop. 7.10 c)]
> RjpRf,RHomy 1 (15" [—1], Gu[1]) [14, Lemma 7.4]

= RjpRf, ;R_HOmzu /p] (/L?r"a Gum)[2]
= RjpRfy iy~ 12]

~ Rjp RS (Zaga (1 = ) 2) 2 Ripe RS 251 /0 () B. Thin. 1.2
= Rjpelxpr /7" (1) [14, Prop. 7.10 a)]
= Rjpjp i [p"(n) = L5 /p"(n) [14, Thm. 7.2 a), Prop. 2.3]

After applying RI'(X 4, —), we get a quasi-isomorphism of complexes of abelian groups
RHom(jpi"[~1], 25 (0)) = RT(Xay Z5 /6" (n)).
Now according to the duality [14, Theorem 7.8],
RHom (jpp"[—1], Z°(0)) = RHOIH(Rfc(Xét, ot [—11), Q/Z[-2]).
What we end up with is a quasi-isomorphism
RI(X 4, 2237 (n)) 2 RHom (R (X g i [~1]), Q/Z[~2)).

The groups f[é(X éts Ip! ,u;?«”[—l]) are finite (the sheaves j, ug’i” are constructible), so apply-
ing RHom(—, Q/Z[—-2]) yields (2). O

To conclude the proof of Theorem [I| we identify the complex on the right-hand side
of (1)). For this, we need Conjecture L¢(X¢, n).

PROPOSITION 2.2. Assuming Conjecture L¢(Xg,n), for n < 0, there is a quasi-

1somorphism

liny RHom(RT (X, Z/mZ (1)), Q/Z]~2]) = RHom(RT (X 4, Z°(n)), Q/Z[~2)).
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ProoF. Consider short exact sequences
0 — H'(Xe, Z°(n))m — H' (X, Z/mZE(n)) = m HH (X g, Z¢(n)) — 0.

If we now take Hom(—,Q/Z) and filtered colimits lim . we get
(3) 0 — limg Hom(,, ™" (X4, Z°(n)), Q/Z) —
m li Hom (H' (X g, Z/m7Z2(n)), Q/2) —
. @Hom(Hi(Xét, Z°(n))m,Q/Z) — 0.

By Conjecture L¢(X 4, n), the group H" (X g, Z¢(n)) is finitely generated, and hence

the first hgm in the short exact sequence vanishes, and we obtain isomorphisms
lig Hom(H" (X ¢, Z°(n))m, Q/Z) = lig Hom(H" (X ¢, Z/mZ*(n)), Q/Z).

It remains to note that the left-hand side is canonically isomorphic to Hom(H*(X ¢, Z%(n)), Q/Z),
again thanks to the finite generation of H* (X, Z%(n)), under Conjecture L¢(X 4, n).

To see this, observe that if A is a finitely generated abelian group, there is a canonical
isomorphism

lim Hom(A,,,Q/Z) = Hom(A,Q/Z)

induced by A — A,,, and then applying the functor Hom(—, Q/Z) and hgm Since Q/Z
is a torsion group, any homomorphism A — Q/Z is killed by some m, hence factors
through A,,. m

3 Gr-equivariant cohomology of X (C)

LEMMA 3.1. Let A® be a perfect complex of ZGgr-modules.

1) The complexr A* @Y Q/Z is of cofinite type.

2) RI'(Gg, A®* ® Q) = (A* ® Q)°F is a perfect complex of Q-vector spaces, and the
complex Rf(GR, A* ® Q) is quasi-isomorphic to 0.

3) RL(Gg, A® @ Q/Z) = RI(Gg, A*[+1]), and these complezes have finite 2-torsion

cohomology.

4) RU(GR, A®) is almost perfect, and RT(Gg, A* @ Q/Z) is almost of cofinite type.
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PrOOF. The universal coefficient theorem gives us short exact sequences
0— H'(A®),, = H(A* @ Z/mZ) — ,,H ' (A*) — 0.
The colimit of these over m is
0— H'(A*)®Q/Z — H'(A* @“ Q/Z) — H"'(A*) 40, — 0.

Here H'(A®) ® Q/Z is injective, hence the short exact sequence splits. We see that
Hi(A®* @Y Q/Z) is of cofinite type and vanishes for |i| > 0, i.e. that A®* @ Q/Z is of
cofinite type.

Let us now consider the spectral sequences
(4) B} = HP(Gr, H'(A®* ® Q)) = H""(Gr, A* ® Q),
(5) B} = HP (G, HY(A®* ® Q)) = HP*(Gr, A° ® Q).
We recall that HP (G, —) are 2-torsion groups for p > 0. Since H1(A®* ® Q) are Q-vector
spaces, it follows that EYY = 0 for p > 0 in , and the spectral sequence degenerates.
Similarly, the Tate cohomology groups H?(Gg, H1(A* ® Q)) are trivial for all p for the
same reasons, so that is trivial. This proves part 2).

Part 3) now follows from the distinguished triangle
RT(Gg, A*) — RT(Gg, A* ® Q) — RT(Gg, A* @ Q/Z) — RT(Gg, A*)[1].
Next, examining the spectral sequence
B3 = HY (G, H(A%)) = H""(Gg, A*),

we see that the groups H'(Gg, A®) are finitely generated, zero for i < 0, and torsion for
1> 0. The latter is 2-torsion. To see that, let P, — Z be the bar-resolution of Z by free

ZGr-modules. Consider the morphism of complexes

>P3 > Py > Py > I > 0

PR b e

> Py > Py > Py > Py > 0

where N denotes the norm map. The proof of [39, Theorem 6.5.8] shows that the above
morphism induces multiplication by 2 on H*(Gg, —) for ¢ > 0, and it is null-homotopic.
Since A® is bounded, we see that the above morphism induces multiplication by 2 on
H(Gg, A®) for i > 0.

Similarly, analyzing

B3 = H?(Gy, H'(A* " Q/Z)) = H""(Gy, A* @ Q/Z).
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we see that H'(Gg, A* @ Q/Z) are groups of cofinite type. To see that these are finite

2-torsion for 7 > 0, consider the triangle
RT(GR, A®) = RI(Gg, A®* ® Q) — RI(Gg, A® @" Q/Z) — RI'(Gg, A*)[1].

Here RT(Gg, A* ® Q) is bounded, and therefore H'(Gg, A®* @ Q/Z) = H™ (G, A®) for
i > 0. U

PROPOSITION 3.2. Let X be an arithmetic scheme and n € Z. Then X(C) has the

following types of complexes as its cohomology:

A=7 A=Q A=Q/Z

RT.(X(C), A(n)) perfect;z, | perfect;g | cofinite type

almost almost
RFC<GR7 X((C)? A(n)) perfect perfGCt/Q coﬁnite type
~ finite ~ finite
RPC(GRy X((C)7 A(n)> Q_tofr'sio'n/ - O 2-t07"5i0n

Moreover, there s an isomorphism
(6) H!(Gg, X(C),Z(n)) = H(Gg, X(C),Z(n)) fori>2dimX — 1.

This result is purely topological and holds for any n € Z, unlike other results of
this paper regarding motivic cohomology that are stated for n < 0. Here Z(n), Q(n),
Q/Z(n) are the constant Gg-equivariant sheaves (27i)" 7Z, (2mi)" Q, Q(n)/Z(n) respec-
tively. Their relation to the sheaves Z(n), Q(n), Q/Z(n) on X4 (Definition is given
by Proposition [6.1] below.

PrRoOOF. We claim that HI(X(C),Z(n)) are finitely generated groups, and

(7) HY{(X(C),Z(n)) =0 for ¢ ¢ [0,2dim X — 2].

c

We may assume X (C) # (. The topological dimension of X (C) satisfies dim X =
1+ dim X¢ = 1+ 3 dimy,, X(C), so that dimg, X (C) = 2dim X — 2.
If X(C) is smooth, we may assume it is of pure dimension d = dimy,, X(C). Then

finite generation and follow from the Poincaré duality
H{(X(C), Z(n)) = Hpa—i(X(C), Z(n)),

and the fact that X (C) has the homotopy type of a finite CW-complex by van der Waer-

den’s theorem (see [38] and more recent expositions with more general results in [27, 21]).
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In the general case, we use induction on the dimension of X (C). Consider the decom-
position U(C) — X(C) <= Z(C), where Z(C) is the singular locus. In the long exact

sequence
w = HY(U(C), Z(n)) = HA(X(C),Z(n)) — HA(Z(C), Z(n)) — HI(U(C), Z(n)) — -+

the groups HI(U(C), Z(n)) are finitely generated by the smooth case, and H?(Z(C),Z(n))
are finitely generated by induction hypothesis. It follows that HI(X(C),Z(n)) are finitely
generated. Similarly we conclude by induction that holds.
The rest of the table is an application of the previous lemma to RI'.(X(C),Z(n)).
Finally, @ follows from the spectral sequences

B3 = H?(Gr, HI(X(C),Z(n))) = H(Gg, X(C), Z(n)),
By = H?(Gg, H!(X(C), Z(n))) = H!(Gg, X(C), Z(n)),

using and the isomorphism ﬁp(GR, —) = HP(Gg,—) for p > 1. ]

4 Some consequences of Theorem I

Now we deduce some consequences from the duality Theorem [

LEMMA 4.1. The canonical morphism ¢': H{(Xa, Z(n)) — Hi(Xa Z(n)) sits in a

long exact sequence

o= H7(Gr, X(C), Z(n)) — Hi(Xa, Z(n)) S HI(Xa, Z(n))
— H{(Gg, X(C),Z(n)) — ---

where the groups f[g(GR,X(C), Z(n)) are finite 2-torsion. In particular,
1) the kernel and cokernel of ¢' are finite 2-torsion,
2) if X(R) =0, then RfC(GR, X(C),Z(n)) =0 and f]g(Xét,Z(n)) ~ HY(Xg,Z(n)).

ProOF. The exact sequence follows from the definition of modified étale cohomology
with compact support and Artin’s comparison theorem. This is proved in [8, Lemma 6.14].
In particular, the argument shows that Rfc(GR, X(C),Z(n)) = Rf(GR, v*Rf.Z(n)) where
v: SpecC — SpecZ and f: X — SpecZ, and RfC(GR,X(C),Z(n)) =0 if X(R) = 0.

The fact that H'(Gg, X(C),Z(n)) are finite 2-torsion is a part of Proposition m O

PROPOSITION 4.2. Let X be an arithmetic scheme of dimension d satisfying Conjec-
ture L¢(X g, n), let n < 0.
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1) If X(R) =0, then H(X ¢, Z°(n)) =0 fori>1 ori < —2d.

2) In general, H(X ¢, Z°(n)) = 0 fori < —2d, and H (X g, Z(n)) is a finite 2-torsion
group for i > 1.

3) If X/F, is a variety over a finite field, then the groups H'(X 4, Z¢(n)) are finite for
all 1 € Z.

In general, we have the following cohomology for n < 0:

groups type 10 1 >0
Hi(Xa,Z°(n)) gf:gzg ; 0 fori < —2d fogfon fori>1
Hi(X g, Z(n)) cofinite 2—]2?071732'6071 fori<1 0 fori>2d+2
Hi(X4,Z(n)) cofinite 0 fori <1 2_?:;;::0”} fori>2d+2

In particular, RU(X ¢, Z¢(n)) is an almost perfect complex, while RU.(X &, Z(n)) is almost
of cofinite type in the sense of Definition[1.1]

PRrROOF. If X(R) = (), then our duality Theorem [I| gives

X(R)=0

Hom(HQ*"(Xét,Zc(n)),Q/Z)%ffi(Xét,Z(n)) > H(Xg Z(n)).

We have H!(X4,7Z(n)) = 0 for ¢ < 1 by the definition of Z(n), and H:(Xg,Z(n)) =
H™Y(X4,Q/Z(n)) = 0 for i > 2d + 2 for reasons of f-adic cohomological dimension [I]
Exposé X, Théoréme 6.2]. This proves part 1) of the proposition.

In part 2), the group H* (X, Z¢(n)) is finite 2-torsion for 4 > 1, thanks to part 1) and
Lemma [4.1 Moreover, we have H'(X, Z¢(n)) & H (X 4,Q°(n)) for i < —2d according
to [32, Lemma 5.12]. Conjecture L¢(X 4, n) implies that these groups are Q-vector spaces
finitely generated over Z, hence trivial.

In part 3), the cohomology groups H'(X¢,Z(n)) = H™ (X4, Q/Z(n)) are finite for
n < 0 by [22, Theorem 3]. O

5 Complex RI'y(X,Z(n))

The purpose of this section is to define auxiliary complexes RI'y, (X, Z(n)), which are used

below in the construction of Weil-étale cohomology.
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DEFINITION 5.1. Assuming Conjecture L¢(X ¢, n) and n < 0, consider the morphism
ax ., in the derived category D(Z) given by the composition

Q—-»Q/Z
_—

RHom(RI'(X g, Z(n)), Q[—2]) RHom(RI'(X 4, Z(n)), Q/Z[-2])

Theorem MTE
RT.(X 4, Z(n))

lpro j.

RTU (X, Z(n))

Here the first arrow is induced by the canonical projection Q — Q/Z, and the last
arrow is the canonical projection from the modified cohomology with compact support to
the usual cohomology with compact support (see Appendix .

We define the complex RI'y,(X,Z(n)) as a cone of ax p:

QAX n

RHom(RT(X ¢, Z°(n)), Q[—2]) RTo(Xa, Z(n)) — RT (X, Z(n))

— RHom(RT (X, Z°(n)), Q[—1]).

Further, we denote

H}g(X, Z(n)) == H'(RT1,(X, Z(n))).

REMARK 5.2. Under Conjecture L¢(X 4, n), the groups H!(X g, Z(n)) for n < 0 are of
cofinite type by Theorem [l while RHom(RI'(X ¢, Z¢(n)), Q[—2]) is a complex of Q-vector
spaces. Therefore, the morphism ay, is completely determined by the maps between

cohomology groups
H'(ax,,): Hom(H* (X¢, Z°(n)), Q) — H(X ¢, Z(n))
—see Lemma [A.5]

REMARK 5.3. We note that our RI';,(X, Z(n)) plays the same role as Ry (X 4, Z(n))
in [8, Definition 3.6]. We use a different notation since Flach and Morin work with the
Artin-Verdier topology and their complex Ry (X ¢, Z(n)) is perfect, while our complex

can have finite 2-torsion in arbitrarily high degree.
We first note that the definition simplifies when X has no real places.

PROPOSITION 5.4. Assuming conjecture L¢(X g4,n), for n <0, if X(R) =0, then

RT},(X, Z(n)) = RHom(RT(X 4, Z°(n)), Z[-1]).
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PROOF. In this case RTo(X g, Z(n)) — RTo(Xu, Z(n)) is the identity morphism, and

therefore acx,, sits in the following commutative diagram with distinguished columns:

RHom(RT(X 4, Z°(n)), Q[~2]) —% s RHom(RT(Xs, Z¢(n)), Q[~2))

RFC(X;;, Z(n)) — e RHom(Rr(Xét,iC(n)), Q/Z[-2])
erg()E,Z(n)) ------- EREEE ; RHom(RI‘(Xé;:ZC(n)),Z[—l])

RHom(RT (X4, Z¢(n)), Q[—1]) —%— RHom(RI(X«, Z¢(n)), Q[—1])
Here the first column is our definition of RI's, (X, Z(n)), and the second column is induced
by the distinguished triangle Z — Q — Q/Z — Z[1]. O

PROPOSITION 5.5. Assuming Conjecture L¢(Xg, n), the complex RI't(X,Z(n)) for
n < 0 is almost perfect in the sense of Deﬁnitz’on i.e. its cohomology groups Hy, (X, Z(n))
are finitely generated, trivial for i < 0, and 2-torsion for i > 0.

PROOF. By the definition of RI'f,(X,Z(n)), there are short exact sequences
0 — coker H'(ax,,) — H}g(X, Z(n)) — ker H* ! (ax,,) — 0.

The morphism ax , is given at the level of cohomology by

o

Hi(ax,n): Hom(H* (X ¢, Z°(n)), Q) ﬂ) Hom(H* (X ¢, Z°(n)),Q/Z) —
H(Xa,2(n)) &5 Hi(Xa, Z(n))

where H?7(X¢,Z¢(n)) is a finitely generated abelian group according to L¢(X ¢, n). We

consider the ker-coker exact sequence (ignoring the isomorphism in the middle)

0— E{om(Hz’i(Xét, Z°(n)), ) — ker H'(ax,) — ker ¢' —
gkgwi
I{om(H2’i(Xét, Z5(n))tor, Q/Z) — coker H'(ax,,) — coker ¢" — 0.
%coigrwi

Here ker ¢ and coker ¢ are finite 2-torsion according to Lemmald.1} and H*(X 4, Z¢(n))
are finitely generated by L¢(X¢,n). This establishes finite generation of ker H**(ax )
and coker H*(ax ), and hence of Hj (X, Z(n)).

From the description of cohomology groups in Proposition (1.2, for ¢ < 0 we have
Hom(H* " (X&,Z°(n)),Q) = H)(X&, Z(n)) = 0, and hence H} (X,Z(n)) = 0. On the
other hand, for i > 0 we have Hom(H?*™(X&,2%(n)),Q) = 0, so that Hj (X, Z(n)) =
H!(X¢,Z(n)) is a finite 2-torsion group. O
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PROPOSITION 5.6. Assuming conjecture L¢(X g, n), forn <0, the complex R 1,( X, Z(n))

is defined up to a unique isomorphism in the derived category D(Z).

PROOF. The complex RHom(RI'(X 4, Z¢(n)), Q[—2]) consists of Q-vector spaces, and
RT'y(X, Z(n)) is almost perfect, so we are in the situation of Corollary [A.3] O

PROPOSITION 5.7. Suppose that Conjecture L¢(X g4, n) holds for n < 0 and consider
the distinguished triangle defining RT1)(X, Z(n)):

RHom(RI'(Xa, Z°(n)), Q[~2]) “*% RT.(Xa, Z(n)) L+ RT (X, Z(n))
2y RHom(RT (X4, Z¢(n)), Q[—1]).

1) The morphism g induces an isomorphism

9®Q: RT(X,Z(n)) ® Q = RHom(RT(X 4, Z¢(n)), Q[—1]).

2) For each m > 1 the morphism f induces an isomorphism

f®Z/mL: RUo(Xg, Z(n)) @ Z/mZ = RT (X, Z(n)) @ Z/mZ.

3) For any prime { the morphism f induces an isomorphism

@Hi(Xét; Z/l"(n)) = Hyy(X, Z(n)) ® Zy.

PROOF. The groups H!(X g, Z(n)) are all torsion, and therefore RT.(X ¢, Z(n))@Q =

0 in the derived category. Similarly, the complexes of Q-vector spaces RHom(RI'(X ¢, Z¢(n)), Q[- - -

are killed by tensoring with Z/mZ. This proves 1) and 2).
Now 2) implies 3): by the finite generation of H} (X, Z(n)), we have

. 2) . . .
lim HY (X, Z/¢7 () = lim Hyy(X, 2/ (n)) = i Hiy (X, Z(n)) /€7 = Hiy(X, Z(n)) © Z.
]

The groups Hj,(X,Z(n)) provide an integral model for (-adic cohomology in the fol-

lowing sense (see also [10, §8]).

COROLLARY 5.8. Let X be an arithmetic scheme satisfying Conjecture L¢(Xg,n) for
n < 0. Then
Hpy(X, Z(n)) @ Ze = Hy(X[1/l) s Ze(n)),

where the right-hand side denotes (-adic cohomology with compact support.
PRrROOF. We have Z(n)/l" = jau". Now by part 3) of the previous proposition,
i ~ T i . ny o 1 i ny dfn 7o
Hfg(XaZ(m) ® Ly = @Hc(Xétaje!M% ) = lglch(X[l/E]étaM?; ) = Hy(X[1/let, Ze(n)).
O
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6 Proof of Theorem I1

The aim of this section is to prove Theorem [[IL We recall that it states that the morphism

of complexes u} , defined as the composition

RT (X4, Z(n)) ——---"=--— RT,(Gz, X(C),Z(n))
RU(X e, Q/Z(n))[~1] =24 R (Gr, X(C), Q/Z(n))[~1]

is torsion. Here v’ : RT'.(X¢, Q/Z(n)) — RI'.(Gg, X(C),Q/Z(n)) is induced by the
comparison functor o*: Sh(X¢) — Sh(Gg, X(C)), as explained in Proposition [B.5] We
first ensure that a* identifies the sheaf Q/Z(n) on X from Definition with the Gg-

equivariant sheaf Q/Z(n) = ((ergn% on X (C).

PROPOSITION 6.1. For the sheaf Q/Z(n) on X& we have an isomorphism of Gg-

equivariant constant sheaves on X (C)

@ Q/Z(n) = Q/Z(n).
PROOF. We first compute that the functor o* sends the sheaf 2" on X to the
constant Gr-equivariant sheaf (27”))% on X(C):

@i 2 i (C)*" := Hom(p1,n (C) ", Z/mZ)
~ (2mi)" Z
m (2mi)" Z
—here the first isomorphism comes from the definition of a* given in Appendix [B| and

the second isomorphism comes from the corresponding isomorphism of Gr-modules.
Since a* preserves colimits (Lemma [B.4]), we have

]

2mi)" 7 (2mi)"
) o (D) =y U G

We proceed with our proof of Theorem . Our argument follows the proof of [8, Lemma

3.25]. We'll need following result about ¢-adic cohomology.

PROPOSITION 6.2. Let X be an arithmetic scheme and n < 0. Then for any prime ¢

we have

(H(Xg 40 Qe/Ze(n)) ) i = 0.

PrOOF. We claim that for a suitable choice of prime p # ¢,

HI(XQet,Z( n)) = H’(X]F et,Zg(n)) for all 4.
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We have f: X — SpecZ, separated, of finite type. Z(n) is a constructible Z,-sheaf on
X in the sense of [I7, Exposé VI, 1.1.1], and by [ibid., 2.2.2], R’ fiZ(n) is a constructible
Z-sheaf on SpecZ. Now [ibid., 1.2.6] implies that there exists an open subscheme U =
SpecZg C SpecZ such that R'fiZ,(n) is a twisted constant sheaf on U. We may take
a finite set of primes S such that this holds for all i. Then for p ¢ S, the proper base
change for constructible sheaves [ibid. 2.2.3] applied to the diagram

X@ > XU < XE
J L
| Jr |
SpecQ — Spec Zg — SpecF,
gives us an isomorphism
(8) H(Xg e Zo(n)) = (R fuyZo(n))7 = (R fu,Ze(n))z = Ho( X5, 4 Zo(n)).
We denote by I, the inertia subgroup of the absolute Galois group Gg,:
1 —1I,— Gg, = Gr, — 1.

The isomorphism is equivariant under the Gg,-action on the left-hand side and
G,-action on the right-hand side. We have

H(Xg,00 Qo/Zo(n)) 7 — HYXg s Qu/Ze(n)) /T = H X5 4, Qo Zo(n)) ",
so it suffices to show that
(H (X a0 Qe Zo(n)) % ) iy = 0.

The long exact sequence of G, -modules

= Hi( X 4 Zo(n)) = HA(Xg o Qu(n)) = Hi(Xg 4 Qe/Zo(n))
= H N (X 4 Zo(n)) = -

induces short exact sequences

9) 0= HAXg s Ze(n)) cotor = HAXg s Qe(n)) = HA( X s Qu/Ze())ai — 0.

i Hé(Xiyé :Zf(n)) i .

Here HC(XE’ét, Zo(N)) cotor = Hg'.(XF—?ét,tZg(n))m’ and we use that HC(X@ét, Zy(n)) are finitely
generated Zy,-modules, hence have no nontrivial divisible subgroups.

According to [I8, Exposé XXI, 5.5.3], the eigenvalues of the geometric Frobenius acting

on H é(Xﬁ ¢« Qp) are algebraic integers. After twisting Qp by n, the eigenvalues will lie
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in p~"7Z. Since n < 0 by our assumption, this implies that 1 does not appear as an

eigenvalue, and hence

Hy(X;, ¢ Qe(n)) " = 0.
Thus, after taking the G, -invariants in @D, we obtain
0 = (Hy(Xs, 0 Qe/Ze(n)) ain) ™ — H'(Gr,, H( Xz, 0 Ze(n)) cotor) = -+
This gives a monomorphism between the maximal divisible subgroups
(Ho(Xgy 00 Qe/Ze(n) i) 7 i — H' (Gr,s H( Xy g5 Ze (1)) cotor) div-

However, H I(GIF,,, Hé(Xﬂ ¢t Lo(N)) cotor) 1s a finitely generated Z,-module, and therefore

its maximal divisible subgroup is trivial. We conclude that
(Ho( X, s Qe/ Za(10) %% ) i = (HY( Xy, 0 Qe/ Lt (12)) i) ) i = 0. O
Proof of Theorem[I]. By Definition this amounts to showing that the morphism
Vst RUe(Xa, Q/Z(n)) — RU(Gr, X(C), Q/Z(n))

is torsion. The complexes RI'.(X&, Q/Z(n)) and RI'.(Ggr, X(C),Q/Z(n)) are almost of
cofinite type by Proposition and Proposition |3.2 respectively. Therefore, according to
Lemma [A.4] to show that v : RT.(X4,Q/Z(n)) — RI.(Gg, X(C),Q/Z(n)) is torsion,
it suffices to show that the corresponding morphisms on the maximal divisible subgroups

Hy(v3)aiwt He(Xa, Q/Z(n)) aiw — H(Gr, X(C), Q/Z(n)) giv

are trivial. The morphism H}(Xs Q/Z(n)) — H(Xg .« Q/Z(n)), and hence H:(v),
factors through H!(Xg 4, #®")9¢, where p®" is the sheaf of all roots of unity on Xg 4

twisted by n. So we have

Hi(X 0, Q/Z(1)) B Hi(Gr, X(C), Q/Z(n))ai
- Y

Now

I

(Hi(Xg e 1)) ., (@ H:(Xg e Qé/Zé(n))G@>
4 div

P (Hi(Xg e Q/Ze(n)??) ..,
)4

I

where all the summands are trivial by Proposition [6.2 O]
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7 Weil-étale complex RI'y (X, Z(n))

The aim of this section is to construct the Weil-étale cohomology complexes RI'y (X, Z(n)).

LEMMA 7.1. Let X be an arithmetic scheme andn < 0. Assume Conjecture L¢(X ¢, n),

so that the morphism ax,, ewists. Then ui, o ax, = 0.

RHom(RI'(X,Z(n)), Q[—2])

O5X,n\£ =0

*

RTo(Xa, Z(n)) ——=—— RI.(Gg, X(C), Z(n))

PROOF. The morphism ax, is defined on a complex of Q-vector spaces, and u is
torsion by Theorem [[I] O

DEFINITION 7.2. Assuming Conjecture L°(X 4, n), forn < 0, welet i% : Ry (X, Z(n)) —
RT'.(Ggr, X(C),Z(n)) be a morphism in D(Z) that gives a morphism of distinguished tri-

angles

RHom(RT(X, Z¢(n)), Q[—2]) ' 0

X n

~ ~
*

RU.(X¢,Z(n)) ——=— RT.(Gg, X(C),Z(n))

(10) ! ) 1
RT} (X, Z(n)) - % ___, RI.(Gw, X(C),Z(n))
RHom(RI'(X, Z¢(n)), Q[~1]) . 0

In fact, this makes 7% independent of any choices.

PROPOSITION 7.3. Assuming Conjecture L¢(Xg,n), for n < 0, there is a unique
morphism i’ that fits in the diagram ((10)).

PrOOF. We can apply Corollary[A.3] since RHom(RI'(X, Z¢(n)),
of Q-vector spaces, and both RI't,(X,Z(n)) and RI'.(Ggr, X(C),Z(n)
by Proposition [5.5 and Proposition [3.2] O

Q[—2]) is a complex
)

are almost perfect

PROPOSITION 7.4. Assuming Conjecture L¢(Xg,n), for n < 0, the morphism i*_ is

torsion.
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PROOF. Let us examine the morphism of distinguished triangles that defines 77 ;

in particular, the commutative diagram

RUo(X e, Z(n)) ——— RT (X, Z(n))

*
2%

RI¢(Gr, X(C), Z(n))

According to Corollary [A-3] the morphism

Homp z)(RL'y(X, Z(n)), RU'c(Gr, X (C), Z(n)))
— HOIIlD(Z)<RFc(Xét7 Z(n)); RPC(GR7 X((C)7 Z(”)))

induced by the composition with RI'.(X¢,Z(n)) — RIf,(X,Z(n)), is a monomorphism,
and therefore

HomD(Z)(Rng(X, Z(n)), RT.(Gg, X(C),Z(n))) ® Q —
Hompz) (Rl'(Xa, Z(n)), RU(Gr, X(C),Z(n))) ® Q

is also a monomorphism. However, u, ® Q = 0 by Theorem [[I, and this implies that
it ®Q =0. O

We are now ready to define the Weil-étale complexes.

DEFINITION 7.5. Assuming Conjecture L¢(X g, n), for n < 0, we let Ry, (X, Z(n))
be an object in the derived category D(Z) which is a mapping fiber of % :

RU'w (X, Z(n)) = RI'y(X,Z(n)) N RT.(Gr, X(C),Z(n)) = RI'w,(X,Z(n))[1].
The Weil-étale cohomology with compact support is given by
Hiy (X, Z(n)) == H'(RT w,o(X, Z(n))).

REMARK 7.6. Note that this defines RI'w (X, Z(n)) up to a non-unique isomorphism
in D(Z), and the groups Hj, .(X,Z(n)) are also defined up to a non-unique isomorphism.
In a continuation of this paper we will make use of the determinant detz RI'w,.(X, Z(n))
in the sense of [23], which will be defined up to a canonical isomorphism.

However, we recall from Proposition that RI'y,(X,Z(n)) is defined up to a unique
isomorphism in the derived category D(Z). If we could define i : RI'(X,Z(n)) —
RT.(Ggr, X(C),Z(n)) as an explicit, genuine morphism of complexes (not just as a mor-

phism in the derived category D(Z)), this would give us a canonical and functorial defi-
nition for RI'w (X, Z(n)).
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Case of varieties over finite fields
For varieties over finite fields, our Weil-étale cohomology has a simple description, and it
is Q/Z-dual to the arithmetic homology studied by Geisser in [13].

PROPOSITION 7.7. If X is a variety over a finite field F, and n < 0, then assuming

Conjecture L¢(X, n), there is an isomorphism of complezes
(11) R ,o(X, Z(n)) = RHom(RT(X 4, Z(n)), ZI-1]),
and an isomorphism of finite groups
Hyy (X, Z(n)) = Hom(H* (X 4, 2°(n)), Q/Z)
= Hy(Xa, Z(n))
= Hom(H{_ (X, Z(n)), Q/Z),
where HS(X o, Z(n)) are the arithmetic homology groups defined in [13] §3].
PROOF. Under our assumptions, X (C) = 0, and therefore RI'.(Ggr, X(C),Z(n)) =
0, so that RTw,.(X,Z(n)) = RI'(X,Z(n)). Finally, by Proposition [5.4] we have an
isomorphism RI't,(X,Z(n)) = RHom(RI' (X4, Z°(n)), Z[—1]).

To relate this to Geisser’s arithmetic homology, according to [13, Theorem 3.1], there

is a long exact sequence
o> HE (X, Z(n)) = H (Xor, Z(n)) = CHL (X, i — 2n)g — HY o(Xa, Z(n)) — -
Here the homological notation means that
Hic(Xétﬂ Z(n)) = H_i<Xét7 Zc(n))a
CH,(X,i—2n)g = H (X, Q(n)) =0,

where the rational vanishing uses finiteness of H*(X 4, Z¢(n)) for X over a finite field and
n < 0, assuming L¢(X 4, n) (Proposition [£.2).
Therefore,
H{(Xar, Z(n)) = H' (X4, Z°(n)).

Now gives
EP? = Exth(H'"%(X 4, Z°(n)), Z) = Hﬁ;’rf(X, Z(n)),

and again, by finiteness of H'~%(X 4, Z¢(n)) under our assumptions, this spectral sequence

is concentrated in p = 1, where
Exty,(H'™ (X g, Z°(n)), Z) = Hom(H'" (X, Z¢(n)), Q/7Z),
so that

Hyf (X, Z(n)) = Hom(H' ™ (Xa, Z°(n)), Q/Z) = Hom(H; (Xar, Z(n)),Q/Z). O
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Perfectness of the complex

Our next aim is to verify that Ry .(X,Z(n)) is a perfect complex. From now on we

tacitly assume Conjecture L¢(X 4, n) for n < 0.
LEMMA 7.8. The groups Hyy, (X, Z(n)) are finitely generated for all i € Z.
PRrOOF. In the long exact sequence

.- = H7Y(Gr, X(C), Z(n)) — HYy, (X, Z(n)) = H} (X, Z(n))
T, Hi(Gr, X(€), ) — -+
the groups H.(Gr, X (C), Z(n)) and H} (X, Z(n)) are finitely generated by Proposition ,
and Proposition , respectively. This implies the finite generation of H zW’C(X ,Z(n)). O

LEMMA 7.9. One has Hyy (X, Z(n)) =0 for i < 0.

PRrROOF. The definitions of RI'f,(X,Z(n)) and RI'w (X, Z(n)) yield exact sequences

H;™Y(Gr, X(C), Z(n))
!
Hiy, (X, Z(n))
J
Hi(Xa Z(n)) — Hi(X,Z(n)) — Hom(H'"*(X4,Z°(n)), Q) — H:(Xe,Z(n))

{
H{(Gr, X(C), Z(n)).

Ifi <0, then H (X4, Z(n)) = H(Ggr, X(C),Z(n)) = 0. Moreover, Hom(H'~"(X 4, Z¢(n)), Q) =
0 for i < 0, since H'™(X¢,Z%(n)) is finite 2-torsion (Proposition . We conclude that
Hiy (X, Z(n)) = Hjy(X,Z(n)) = 0 for i <0. O

For the vanishing of H ZW,C(X ,Z(n)) for i > 0, we first establish the following auxiliary

result.

LEMMA 7.10. Let d = dim X. For each prime £ and i > 2d we have
(12) Hiy (X, Z(n) ® Ze = HI(X[1/a, Ze(n)),

where the right-hand side is defined via T&nr }AIZ(X[l/E] ¢ty ).
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Proor. Consider the commutative diagram with distinguished rows and columns

[RT (X1, 2%(n)), Q[-2]] e, RTo(Xa, Z(n)) ————— RLp(X,Z(n)) ——— [+]]

id id
[RT(X &, 2°(n)), Q[~2]] —— RTo(Xa,Z(n)) ———— RTp(X,Z(n)) —— [+1]
e [
0 > RT.(Gg, X(C),Z(n)) —%— RT.(Gg, X(C),Z(n)) — 0
< aX,n[l] v ~ <

[RT(X 1, Z¢(n)), Q1] —— RTo(Xe, Z(n))[1] ——— RT(X,Z(n))[1] —— [+2]

~

Here u?, (resp. i

* ) is defined as the composition of the canonical morphism u*_ (resp.

i%.) with the projection to the Tate cohomology
7 RL.(Ggr, X(C), Z(n)) — RL.(Gr, X(C), Z(n)).

By Proposition , H'(rm) is an isomorphism for i > 2d — 1. Therefore, the five-lemma
applied to

RTw (X,Z(n)) —— RI'y(X,Z(n)) N RTU.(Gg, X(C),Z(n)) —— [+1]

I Jo I [

T

RT,(X, Z(n)) — RT4(X,Z(n)) —= RT.(Gg, X(C),Z(n)) — [+1]
shows that for ¢ > 2d holds
Hiy (X, Z(n)) = Hi (X, Z(n)).
As in Corollary [5.8] we have for a prime ¢
(X, Z(n)) © Zo = BH(XTL/ 0 Zon). =
COROLLARY 7.11. One has Hyy (X, Z(n)) =0 fori > 2d+ 1.

PROOF. It suffices to verify that HY, (X,Z(n)) ® Z; = 0 for each prime ¢. Thanks
to the isomorphism (T2), this reduces to H:(X[1/€]a, Ze(n)) = 0 for i > 2d + 1, which is
true for reasons of cohomological dimension [I, Exposé X, Théoreme 6.2]. We note that
if ¢ =2 and X(R) # (), then the usual étale cohomology has finite 2-torsion in arbitrarily
high degrees. It is important that we consider here the modified cohomology with compact
support H !(—). To obtain the corresponding statement, combine the arguments from [I}

Exposé X] with the well-known computations of modified cohomology for number fields;
cf. [30, Chapter II] and [2], [29]. O
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Summarizing the above observations, we obtain the following result.

PROPOSITION 7.12. Conjecture L(X4,n) implies that R w (X, Z(n)) for n < 0
is a perfect complex. More precisely, H%,V’C(X,Z(n)) are finitely generated groups, and
Hyy (X, Z(n)) =0 fori ¢ [0,2dim X + 1].

Rational coefficients

PROPOSITION 7.13. Assuming Conjecture L¢(Xg4,n), for n < 0, there is a non-

canonical splitting
RT'w . (X,Z(n)) ® Q = RHom(RI' (X, Z°(n)), Q)[—1] & RI'.(Gg, X (C), Q(n))[—1].

PRrOOF. The distinguished triangle defining RI'y (X, Z(n)) becomes after tensoring
with Q

RTw,o(X,Z(n)) @ Q = RT;,(X, Z(n)) © @ =222% RT,(Gr, X(C), Z(n)) ® Q
— Rl'w (X, Z(n)) ® Q[1]
which yields a non-canonical splitting [37, Chapitre II, Corollaire 1.2.6]
RUw,(X,Z(n)) @ Q= RI',(X, Z(n)) © Q @ RT(Gg, X(C), Z(n))[-1] @ Q,
and we have already established in Proposition that

RT(X, Z(n)) ® Q = RHom(RT (X4, Z°(n)), Q)[—1]. O

8 Known cases of Conjecture L°( X4, n)

Since the main constructions of this paper assume Conjecture L¢(X 4, n), we relate it
here to other conjectures about the finite generation of étale motivic cohomology formu-
lated in the literature, and also describe certain schemes X for which L¢(Xg, n) holds

unconditionally.

Instead of our L¢( X4, —), Flach and Morin state in [8, §3] a slightly different conjecture
L(X4, —). For proper regular X of pure dimension d, the following is a reformulation of
L(X4,d —n) [8, Conjecture 3.2, Lemma 3.3] in terms of Z¢(n).

CONJECTURE 8.1. For a proper reqular arithmetic scheme X and n < 0, the groups
H' (X, Z(n)) are finitely generated for i < —2n + 1.
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A more precise conjectural description of étale motivic cohomology is [15, Conjec-

ture 4.12], which can be written for Z¢(n) as follows:

CONJECTURE 8.2. For a proper regular arithmetic scheme X and n < 0, one has

finitely generated, i < —2n,
H' (X4, Z°(n)) = finite, 1=—2n+1,
cofinite type, 1> —2n+ 2.

This is consistent with our L(X ¢, n).

PROPOSITION 8.3. Let X be a proper reqular arithmetic scheme and n < 0. Then
Congecture L¢(X 4, n), Congecture and C’onjecture are equivalent.

PRrROOF. For the implication Conjecture 8.1 = L¢(X,n), by [8, Proposition 3.4],
Conjecture [8.1] implies Artin—Verdier duality

H' (X4, 7Z(n)) = Hom(H* (X4, Z¢(n)), Q/Z) up to finite 2-torsion,

hence H'(X ¢, Z¢(n)) is finite 2-torsion for 4 > 2, and in particular for i > —2n + 1.
The implication Conjecture [8.I] = Conjecture [8.2] is also established in [8, Proposi-
tion 3.4]. O

We now list some special cases where Conjecture L¢(X¢, n) is known, and therefore
gives unconditional results. We follow [32] §5] very closely. For an arithmetic scheme X,

we formulate the following conjecture, which is the conjunction of L¢(X ¢, n) for all n < 0.

CONJECTURE 8.4. L¢(X): the cohomology groups H (X, Z°(n)) are finitely gener-
ated for all v € Z and n < 0.

This is similar to [32, Definition 5.8|, with the only difference that Morin also requires
the finite generation of H'(X, Z¢(0)) for i < 0. Conjecture L¢(X) is known for number
rings, and also for certain varieties over finite fields. As in [35], [10], and [32], we consider

the following class.

DEFINITION 8.5. Let A(F,) be the full subcategory of the category of smooth pro-
jective varieties over a finite field F, generated by products of curves and the following

operations.
1) If X and Y lie in A(F,), then X UY lies A(FF,).

2) IfY lies in A(IF,) and there are morphisms ¢c: X — Y and ¢’: Y — X in the category
of Chow motives such that ¢’ o ¢: X — X is a multiplication by constant, then X
lies in A(F,).



Weil-étale cohomology and duality for n < 0 28
3) If Fym/F, is a finite extension and Xpm = X Xspecr, SpecFym lies in A(Fym), then
X lies in A(F,).

4) If X and Y lie in A(F,), and Y is a closed subscheme of X, then the blowup of X
along Y lies in A(F,).

The following is similar to [32, Definition 5.9].

DEFINITION 8.6. Let £(Z) be the full subcategory of arithmetic schemes generated
by the following objects:

e the empty scheme (),

e Spec Op for a number field F',

o varieties X € A(F,) for any finite field [,
and the following operations.

L1) Let X be an arithmetic scheme, Z C X a closed subscheme and U = X \ Z its
open complement. If two of three schemes X, Z, U lie in £(Z), then the third also
lies in L(Z).

£2) A finite disjoint union X = [],_,, X; lies in £(Z) if and only if each X lies in
L(Z).

L£3) If V.— U is an affine bundle and U lies in £(Z), then V also lies in £(Z).

L£4) If {U; — X} is a finite surjective family of étale morphisms such that each U;,
lies in £(Z), then X also lies in £(Z).

------

PROPOSITION 8.7. Conjecture L¢(X ) holds for any arithmetic scheme X € L(Z).
PROOF. See the argument in [32, Proposition 5.10]. O
Finally, we consider cellular schemes, as in [32, §5.4].

DEFINITION 8.8. Let Y be a separated scheme of finite type over Speck for a field
k. We say that Y admits a cellular decomposition if there exists a filtration of Y by

reduced closed subschemes
Y=Yy DYy 12 -2V =0

such that Y; \ Y;_; = A}’ is isomorphic to an affine space over k.
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We say that Y is geometrically cellular if Y7 =Y Xgpeck Spec k admits a cellular
decomposition. This is equivalent to the existence of a finite Galois extension k’/k such
that Y, admits a cellular decomposition.

Finally, given an S-scheme X — S that is separated and of finite type, we say that
X is geometrically cellular over S if for each s € S the corresponding fiber X is

geometrically cellular.

PROPOSITION 8.9. Let Y be a separated scheme of finite type over SpecF,. IfY is
geometrically cellular, then X € L(Z), and in particular Conjecture L¢(Ye) holds.

If X — Spec Op s a flat, separated scheme of finite type over the ring of integers of a
number field, and X is geometrically cellular over Op, then X € L(Z), and in particular
L¢(X ) holds.

For a proof, we refer to [32, Proposition 5.14].

9 Comparison with the complex of Flach and Morin

This paper is based on the ideas of Flach and Morin [8], who gave a similar construction
of Weil-étale cohomology RI'w .(X,Z(n)) for a proper and regular arithmetic scheme X,
and for any integer weight n € Z. In this section, we will go through the definitions of

[8], to verify the following claim.

PROPOSITION 9.1. Let X be a proper, reqular arithmetic scheme, and n < 0. Assume
Conjecture L°(X g, n). Then the Weil-étale complex RT'w (X, Z(n)) defined above in

is isomorphic to the corresponding complex defined in [§].

From now on we tacitly assume Conjecture L¢(X 4, n), which is also equivalent to the
assumptions on motivic cohomology in [8] (see Proposition[8.3). Flach and Morin consider
the case of a proper and regular arithmetic scheme X of equal dimension d. In this case,
we follow [8, Remark 3.11] to reformulate their constructions in terms of complexes Z(n).

Moreover, they work with the Artin-Verdier étale topos X ¢, whose definition and

basic properties can be found in [§, §6]. They consider a morphism
Qx.,: RHom(RI'(X,Z(n)),Q[-2]) = RT(X 4, Z(n)),

defined in a similar way to our ax, (Definition using a duality similar to our Theo-
rem [I

The notation in [8] and in this paper is intentionally the same for various objects
and morphisms. However, in this section we will write, for example, @x , to denote the

morphism of Flach and Morin, to distinguish it from our ax ,, etc. An overline indicates
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that the corresponding thing comes from [8] and has something to do with the Artin—

Verdier étale topos.

LEMMA 9.2. The square

RHom(RT(X,Z(n)), Q[-2]) —* RI(X 4, Z(n))

(13) lz‘d l

RHom(RT(X,Z(n)), Q[-2]) = RI'(Xq,Z(n))
commutes.

Proor. We recall from Remark that ax ,, is determined by the maps at the level
of cohomology H'(ax,). The same is true for ax,, for the same reasons. Now [8|
Theorem 3.5 defines

Hi(ax,,): Hom(H*7(X,Z°(n)),Q) = Hom(H* (X &, Z(n)),Q) —

Hom(H> " (X &, Z(n)), Q/Z) < H (X &, Z(n)),
where the last isomorphism is the duality [8, Corollary 6.26]. Similarly, our morphism
ax p gives

H(ax,): Hom(H*™(X, Z%(n)), Q) = Hom(H**(Xa, Z°(n)), Q) —
Hom(H> " (X4, Z¢(n)), Q/Z) < H'(X 4, Z(n)) — H' (X4, Z(n)).
The groups H' (X4, Z(n)) and H'(X 4, Z(n)) are different, but the duality in terms

of H'(X &,7Z(n)) is compatible with the duality in terms of ﬁZ(Xét,Z(n)> (see [8, Theo-

rem 6.24]): we have a commutative diagram

RU.(X4, Z/mZ(n)) —— RHom(RT (X, Z/mZc(n)), Q/Z[-2))

J |

RT(X 4, Z/mZ(n)) —— RHom(RT(X &, Z/mZ<(n)), Q/Z[—2])

and the diagram

~

RT.(Xu, Z(n)) —— RT(X4, Z(n))

L

RU(X &, Z(n)



Weil-étale cohomology and duality for n < 0 31

commutes as well. We see that the diagram we are interested in commutes:

Hom(H2(X, Z(n)), Q) — H> (X 4, Z(n))” 4 H (X 4, Z(n))

0 Y
lld : ///// l
! ;

Hom(H?> (X, Z¢(n)),Q) — H2 (X4, Z°(n))P Aé(Xét,Z(n)) — HY (X4, Z(n))

Hi(aX,n)
For brevity, Hom(A, Q/Z) is denoted here by AP. O

Taking the cones of @y, and ax.,, we obtain respectively the complex RI'w (X, Z(n))
of Flach and Morin [§, Definition 3.6] and our complex RI't(X,Z(n)) (Definition
above).

The square induces the following diagram with distinguished rows and columns
(cf. [33, Proposition 1.4.6]):

(14)

[RD(X, Z°(n)), Q[=2)] —— RI(Xa,Z(n)) ———— ROw(X,Z(n) — [-1]
id |
+ + <+ 4

[RT(X,Z°(n)), Q[-2]] —— RT(Xg,Z(n)) ———— RT;,(X,Z(n)) — [—1]

~ g l ~

0 ————— RI(X(R), 7sn 1 R7Z(n)) % RT(X(R), 7ons1 RAZ(0)) — 0

~ v l ~

[RD(X, Z¢(n)), Q[~1]] —— RU(X 4, Z(n))[1] —— RTw (X, Z(n))[1] — [0]

id

Then [8, Definition 3.23] considers a morphism @, defined via
(15)
RI(X &, Z(n)) — RI'(X4,Z(n)) — RI(X(R), Ton41 RTZ(n)) — [+1]

I
EH lu:';o lid wr (1]
< <

RUyw(Xw,Z(n)) — RT(Gr, X(C),Z(n)) — RD(X(R), Tons1 RTZ(0)) — [+1

—

Here the complex RT'w (Xo,Z(n)) is defined via the bottom triangle.
Then [8, Proposition 3.24] and our Proposition above establish the existence and
uniqueness of morphisms 7% and 5 which make the triangles below commutative, and

then the Weil-étale complexes are defined as mapping fibers of 7% and ¢ :
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RTw,(X,Z(n)) RTw (X, Z(n))

RPW(%,Z(n)) L RP(X 4, Z(n)) erg(%,zm) «2— RI(Xa, Z(n))
RrW(szm)) - RP(GR,X{E),ZW))%
RFW,C(Yl, Z(n))[1] RFW,C(Xl, Z(n))[1]

In order to compare the two resulting complexes, we note that @’ is only defined via
, so in the diagram below from Figure , we can first choose 7% such that the front
face gives a morphism of triangles. Then we can declare u’, to be the composition 7%_ o f.
In this way everything commutes, and we see that RT (X, Z(n)) & RUw,.(X, Z(n)).

This concludes the proof of Proposition 9.1 n



RTw (X, Z(n)) s RU4y(X, Z(n)) ——— RU(X(R), ron1 R7-Z(n))

. .

oo id
e N .
uho uls id

0 > u I10j AyIrenp pue A50[owIO[Y0D dRIO-[IOAN

~ ~

Ry (Xoo, Z(n)) —— RT(Gg, X(C), Z(n)) —— RT(X(R), 7on1 R7.Z(n))

~ N

Ry, (X, Z(n))[1] ---------- RTw,.(X,Z(n))[1]

~
S <
~

[+2]

Figure 1: Comparison of the Weil-étale complexes from [8] and this paper, denoted RI'w..(X,Z(n)) and RT . .(X, Z(n)) respec-
tively. The top face of the prism comes from (14). The arrow 7% is chosen so that the front face is commutative. Then set
u:. =1’ o f so that the back face is commutative and corresponds to .

o0 o0

€e
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A Some homological algebra

This appendix contains some basic results about the derived category of abelian groups
D(Z) which are used throughout the text. The following lemmas are isolated from the
proofs in [8], with some modifications to treat the 2-torsion.

First, recall that every complex of abelian groups A® (not necessarily bounded) is

quasi-isomorphic to its cohomology:

A.NHHZA. ' HH'LAQ

1EZ 1€EZ
- ( o HTH AN S HiAY) S gAY )
Here [ [, H'(A®)[—i] = [ 1,z H'(A®)[—i] is the complex that has H'(A®) in i-th degree,
which serves as both product and coproduct of complexes H*(A®*)[—i] concentrated in i-th
degree. This gives us a useful expression for morphisms in the derived category: since
Hompz) (4, Bli]) = Ext},(A, B), and Ext}(A, B) = 0 for i > 1, we obtain

Hompz)(A®, B*) = Hompz HH’ (A% HHJ

= [T T] Homoie (' (A%), 1#7(B*)[i — )
o H (Hom(H'(A*), H'(B*)) @ Ext(H'(A®), H'(B"*)))
(16) o H Hom(H'(A®), H(B*)) & H Ext(H'(A*), H~'(B*)).

LEMMA A.1.

1) If C* and C" are almost perfect in the sense of Definition then the group

Hompz)(C*®, C") has no nontrivial divisible subgroups.

2) If A® is a complex such that H'(A®) are finite-dimensional Q-vector spaces and C*
is a complex such that H'(C®) are finitely generated abelian groups, then the group
Hompz)(A*, C*) is divisible.

PROOF. In 1), if C* and C"® are almost perfect, then Hom(H*(C*), H'(C"*)) are finitely
generated groups, 2-torsion for 4 > 0. Writing H*(C*) = Z®" & G, H'(C"*) 2 29" & G
for some 7, r" and finite groups G, G’, we calculate that

Ext(Z%" @ G, Z%" & G') = Ext(G,Z) ®" & Ext(G, G)

N——
~G
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are finite groups, 2-torsion for ¢ > 0. It follows from that Hompz)(C*, C") is a sum
of a finitely generated group and a 2-torsion group, so it cannot have nontrivial divisible
subgroups.

Similarly in 2), under our assumption, Hom(H"(A®), H'(C*®)) = 0 for all i, and the
calculation

Ext(Q%",Z% & G) 2 Ext(Q, Z)*"* @ Ext(Q, G) ¢"
T

shows that Hompz)(A®, C*) is a direct product of divisible groups Ext(Q, Z), hence di-
visible. O

Recall that Verdier’s axiom (TR1) states that every morphism v: A* — B® can be
completed to a distinguished triangle A* < B* % C* % A®[1]. Axiom (TR3) states that

for every commutative diagram with distinguished rows

A* —— B* —— C* —— A*[]]

(17) lf l"

A/o o’ N B/o v’ N Clo w’ N A/.[l]

there exists some h: C* — C’*, which gives a morphism of distinguished triangles

A* —— B* —— C* —— A*[]]

(18) lf lg iah |

Alo u’ N B/o v’ N Clo w’ N A/o[l]

The cone C* in (TR1) and the morphism & in (TR3) are neither unique nor canonical.
Two different cones of the same morphism are necessarily isomorphic, but the isomorphism
between them is not unique, because it is provided by (TR3). Let us recall a useful

argument showing that things are well-defined in some special cases.

LEMMA A.2 (=[3], Proposition 1.1.9, Corollaire 1.1.10]). Consider the derived category
D(A) of an abelian category A.

1) For a commutative diagram , assume that the homomorphism of abelian groups
w*: Hompa)(A°*[1],C"*) — Homp4)(C*,C")

induced by w is trivial. Then there exists a unique morphism h: C* — C'*® that gives

a morphism of triangles ((18)).

2) For a distinguished triangle A* % B* = C* 2 A®[1], assume that for any other
cone C' of u the morphism w* is trivial. Then the cone of u is unique up to a

unique isomorphism.
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PrOOF. In 1), applying Homp4)(—, C'*) to the first distinguished triangle, we obtain

an exact sequence of abelian groups
Homp4)(A*[1], C"*) “5 Homp ) (C*, C"*) * Homp4)(B*, C"*).

If w* = 0, we conclude that v* is a monomorphism. This implies that there is a unique
morphism h such that hov = v o g. Now in 2), if C* and C"* are two different cones of

u, we have a commutative diagram

A* —— B* —— C* —— A°[1]
lid id i lid
A* s B Y O s A0

By the triangulated five-lemma, the dashed arrow is an isomorphism, and it is unique
thanks to part 1). O

Here is a special case that we need.

COROLLARY A.3. Consider the derived category D(Z).

1) Suppose we have a commutative diagram with distinguished rows , where A® is
a complex such that H'(A®) are finite-dimensional Q-vector spaces and C*, C'* are
almost perfect complexes in the sense of Definition (1.1l Then there exists a unique
morphism h: C* — C' which gives a morphism of triangles ((18)).

2) For a distinguished triangle
A0 B 00 B At

assume that A® is a complex such that H'(A®) are finite-dimensional Q-vector spaces
and C* is an almost perfect complex. Then the cone of u is unique up to a unique

isomorphism.

PROOF. In this situation, by Lemma , the group Homp(z) (C*, C") has no non-
trivial divisible subgroups, and Hompz)(A°®[1],C") is divisible. This means that there

are no nontrivial homomorphisms Hompz)(A*[1], C"*) — Hompz)(C*®, C"), and we can

apply Lemma [A.2] O

LEMMA A.4. Suppose that A® and B® are almost of cofinite type in the sense of Defi-
nition (1.1 Then a morphism f: A®* — B*® is torsion (i.e. a torsion element in the group
Hompz)(A*, B*), i.e. f®@Q =0) if and only if the morphisms H'(f): H'(A®*) — H'(B*)

are torsion; that is, they are trivial on the maximal divisible subgroups:

(H (f)ai: H'(A") iy — H'(B*) ai) = 0.
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PROOF. We may write H'(A®) = (Q/Z)*" @& G and H'(B*) = (Q/Z)* @ H for
some r, s and some finite groups G, H. Now
Ext((Q/2)™" & G,(Q/Z)™ & H) = Ext(Q/Z, H) *" & Ext(G, H)
~H

is a finite group. It follows that tensoring with Q kills [[,., Ext(H'(A*), H!(B*))

and gives an isomorphism
Hompz)(A*, B*) ® Q = [ [ Hom(H'(A*), H'(B*)) ® Q,
i€Z
foQw= (H(f) ® Qicz- O

LEMMA A.5. If A® is a complex of Q-vector spaces and B® is a complex almost of
cofinite type in the sense of Definition[1.1], then there is an isomorphism of abelian groups

Hompz)(A®, B®) = H Hom(H'(A®), H'(B*)),

fe (H'(f))iez-

PROOF. If H'(A®) are Q-vector spaces and H*"*(B®) are groups of cofinite type, then
the term Ext(H‘(A®), H""'(B*)) in the formula vanishes by calculations similar to
the above, as Ext(Q, Q/Z) = Ext(Q, G) = 0 for finite G. O

B Cohomology with compact support

For any arithmetic scheme f: X — SpecZ there exists a Nagata compactification
[6, [7] (see also [1l, Exposé XVII])

X «© ] > X

N

Spec Z

where j is an open immersion and ¢ is a proper morphism.

DEFINITION B.1. Let X be an arithmetic scheme and let F be an abelian torsion
sheaf on X4. Then one defines the cohomology with compact support of F via the

complex

RI.(X 4, F) = RI'(Xa, )1 F).

For torsion sheaves, this does not depend on the choice of j: X — X, but here we
would like to fix this choice in order to compare cohomology with compact support on

X¢ with the singular cohomology with compact support on X (C).
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Comparison with the analytic cohomology

DEFINITION B.2. Given a Nagata compactification j: X < X, we consider the corre-
sponding open immersion j(C): X(C) — X(C), and for a sheaf 7 on X (C) we define

Similarly, for a Gg-equivariant sheaf on X (C) we define
I'e(Gr, X(C), F) :=I'(Gr, X(C), j(C),F).

The canonical reference for the comparison between étale and singular cohomology is
[T, Exposé X1, §4], so we borrow some definitions and notations from there. Let X be an

arithmetic scheme.
1. The base change from SpecZ to Spec C gives us a morphism of sites

v: Xea — Xer

2. Let X, be the site of étale maps f: U — X(C). A covering family in X is a family
of maps {U; — U} such that U is the union of images of U;.

(We recall that in the analytic topology, f: U — X(C) is étale if it is a local on the
source homeomorphism: for each u € U there exists an open neighborhood u 3 V'
such that f|,, : V — f(V) is a homeomorphism.)

Since the inclusion of an open subset U C X (C) is an étale map, we have a fully
faithful functor X(C) C X, and the topology on X (C) is induced by the topology
on X . This gives us a morphism of sites §: X, — X (C), which by the comparison
lemma [I, Exposé I1I, Théoreme 4.1] induces an equivalence of the corresponding

categories of sheaves
d.: Sh(X,) — Sh(X(C)).

3. A morphism of schemes f: X{ — X¢ over SpecC is étale if and only if the map
f(C): X'(C) — X(C) is étale [19, Exposé XII, Proposition 3.1], and therefore the

functor X ~» X'(C) gives us a morphism of sites
e: Xo — Xc,a
DEFINITION B.3. We define the functor
a*: Sh(X4) — Sh(Gg, X(C))
via the composition

Sh(X4) —— Sh(Xc.4) —— Sh(X,)) —=— Sh(X(C))
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As we start from a scheme over SpecZ and base change to SpecC, the resulting
sheaf on X (C) is equivariant with respect to the complex conjugation, hence an object in

Sh(Gg, X(C)). For the definition of equivariant sheaves, we refer to the introduction.
LEMMA B.4. o* preserves colimits.

PROOF. «* is the composition of the inverse image functors v* and €* (which are left

adjoint) and an equivalence J,. ]

PrRoPOSITION B.5. Given a sheaf F on X4, there exists a natural morphism
[ Xg, F) — I'(Gr, X(C),a" F),
and similarly, for cohomology with compact support,
[o(Xa, F) = I(Gr, X(C),a* F).

Proor. If j: X — X is a Nagata compactification, we have the corresponding com-
pactification j(C): X(C) < X(C). The extension by zero morphism j(C),: Sh(X(C)) —
Sh(X(C)) restricts to the subcategory of Gr-equivariant sheaves: if F is a Gg-equivariant
sheaf on X(C), then j(C),F is a Gg-equivariant sheaf on X(C). From the definition of

o, we see that that there is a commutative diagram

Sh(X4) —— Sh(Gg, X(C))

jzl lj(‘c)!

Sh(X«) — - Sh(Gr, X(C))

—this diagram commutes for representable étale sheaves, and then every étale sheaf is a
colimit of representable sheaves, and a*, ji, a%, j(C), preserve colimits, as left adjoints.

The morphism in question is given by

Fc(Xétv f) = F(%étaj!-r> — F(GR7%<C)7O[;]"F)
=T'(Gg, X(C),j(C)a*F) =: T(Gg, X (C),a*F). O
The morphism « is also discussed in [8, Appendix A|, but Flach and Morin work

with proper schemes; the above remarks are to make sure that everything works fine for

compactifications.
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Modified étale cohomology

Here we briefly review the modified étale cohomology with compact support
Rfc(Xét, —). It was introduced by Th. Zink in [20, Appendix 2] for the case of num-
ber rings X = Spec Ok g, and it is also discussed in [30] §1I.2]. The general definition for
X — SpecZ is treated in [8, §6.7] and [16] §2].

Thanks to the Leray spectral sequence RI'(X4, —) & RI'(SpecZg, —) o Rgs, we have

RT (X, F) := RU(X g, nF) = RU((SpecZ) g, RAHF), where RAF := Rg.jiF.

First we recall that for a finite group G and a G-module A the corresponding group
cohomology H'(G, A) (resp. Tate cohomology H {(@, A)) can be defined in terms of res-
olutions P, (resp. complete resolutions ﬁ.) of Z by free ZG-modules (see e.g. [0, Chap-
ter VI]). More generally, if A® is a bounded (cohomological) complex of G-modules, we
obtain a double complex of abelian groups Hom**(P,, A*) (resp. Hom**(P,, A*)), and it
makes sense to define the corresponding group hypercohomology (resp. Tate hyper-

cohomology) via the complexes
RI(G, A*) := Tot®(Hom**(P,, A*)), RI(G, A*) := Tot®(Hom"* (P,, A*)).

Now if F is an abelian sheaf on (SpecZ)4, then the corresponding modified coho-

mology with compact support is characterized by the distinguished triangle
RT.((SpecZ) g, F) — RU((SpecZ) g, F) — RT (G, v*F) — R ((Spec Z)a, F)[1].

Here v: SpecR — SpecZ is the canonical morphism, and v*F is the corresponding
sheaf on (SpecR)4, which can be viewed as a Gr-module by [1l, Exposé VII, 2.3], and
Rf(GR, v*F) denotes the corresponding Tate cohomology.

In general, given an arithmetic scheme X — SpecZ and a torsion abelian sheaf F on

X, we choose a Nagata compactification as above and set
RU.(X ., F) := RT.((Spec Z) &, Rf.F).
We have a natural morphism
RT(Xa, F) = RUo(Xe, F),

which is an isomorphism if X (R) = 0. In general, Tate cohomology H'(Gg, —) is annihi-
lated by multiplication by 2 = #Gpg, and therefore ﬁé(Xét, F) — HY(X 4, F) has 2-torsion
kernel and cokernel.

For canonicity and functoriality, I refer to [16], §2].
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