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Uno de los primeros teóricos de números europeos fue el matemático francés Claude Gaspard Bachet de
Méziriac (1581–1638). En 1621 Bachet publicó la traducción en latín de la Arithmetica de Diofanto. En sus
notas Bachet mencionó la siguiente conjetura.

Cada entero n ≥ 0 puede expresarse como la suma de cuatro cuadrados:

n = a2 +b2 + c2 +d 2, a,b,c,d ∈Z.

Por ejemplo,

7 = 22 +12 +12 +12,

15 = 32 +22 +12 +12,

28 = 32 +32 +32 +12.

La primera demostración de esta conjetura fue obtenida por Lagrange en 1770. En esta nota voy a pre-
sentar una demostración basada en el teorema de Minkowski sobre los conjuntos convexos simétricos. Es
un resultado más reciente, probado por Hermann Minkowski en 1889, pero es de mucha importancia en
aritmética y vale la pena revisarlo.

1 Cuaterniones y la identidad de los cuatro cuadrados de Euler

Los cuaterniones fueron introducidos en 1843 por el matemático irlandés William Rowan Hamilton
(1805–1865). Hamilton estaba muy orgulloso de su descubrimiento y hasta escribió un libro de más de 800
páginas sobre el tema, que fue publicado póstumamente. Por falta de tiempo y entusiasmo, voy a revisar
solamente un par de resultados necesarios. A cuatro números reales a,b,c,d ∈R podemos asociar la matriz
compleja de 2×2 (

a +bi c +di
−c +di a −bi

)
.

Esencialmente, es un cuaternión. Un cálculo tedioso nos da la expresión para el producto de dos cuaternio-
nes. Es de la misma forma:

(
a +bi c +di
−c +di a −bi

)
·
(

x + yi z +wi
−z +wi x − yi

)
=

(+(ax −by − cz −d w)+ (ay +bx + cw −d z) i +(az −bw + cx +d y)+ (aw +bz − c y +d x) i
−(az −bw + cx +d y)+ (aw +bz − c y +d x) i +(ax −by − cz −d w)− (ay +bx + cw −d z) i

)
.
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La norma de un cuaternión es el determinante de la matriz correspondiente:

det

(
a +bi c +di
−c +di a −bi

)
= (a +bi ) (a −bi )− (c +di ) (−c +di ) = a2 +b2 + c2 +d 2.

El determinante de matrices es multiplicativo: tenemos det(AB) = det(A) ·det(B). En nuestro caso, com-
parando las últimas dos expresiones, se obtiene

(a2 +b2 + c2 +d 2) · (x2 + y2 + z2 +w2)

= (ax −by − cz −d w)2 + (ay +bx + cw −d z)2 + (az −bw + cx +d y)2 + (aw +bz − c y +d x)2.

Esta fórmula se conoce como la identidad de los cuatro cuadrados de Euler y apareció por primera
vez en una carta de Euler a Goldbach de 1749. De hecho, la identidad de Euler no tiene nada que ver con los
cuaterniones (que todavía no habían sido descubiertos) y se cumple en cualquier anillo conmutativo, como
se puede comprobar desarrollando las expresiones. Sin embargo, tal prueba explica aún menos que nuestra
prueba con cuaterniones.

Euler necesitaba su identidad para el siguiente resultado.

Lema. Si dos enteros m,n ≥ 0 son sumas de cuatro cuadrados, entonces mn es también una suma de cuatro
cuadrados.

Esto significa en particular que para demostrar el teorema de los cuatro cuadrados, sería suficiente de-
mostrarlo para todos los números primos. Por ejemplo, tenemos

2 = 12 +12,

3 = 12 +12 +12,

5 = 22 +12,

y con ayuda de la identidad de Euler se puede obtener la expresión

30 = 42 +32 +22 +12.

Entonces, a partir de ahora, podemos enfocarnos en búsqueda de las expresiones

p = a2 +b2 + c2 +d 2

para p primo y a,b,c,d ∈ Z. Esta reducción al caso primo es el principio de muchas demostraciones del
teorema de los cuatro cuadrados.

2 El teorema de Minkowski

Primero necesitamos un par de definiciones. Un retículo en el espacio vectorial Rn es un subconjunto

Λ= {a1ω1 +·· ·+an ωn | ai ∈Z}

donde ω1, . . . ,ωn ∈ Rn son algunos vectores que forman una base de Rn . El paralelepípedo fundamental
asociado a ω1, . . . ,ωn es el conjunto

Π := {λ1ω1 +·· ·+λn ωn | 0 ≤λi < 1}.

Notemos que todo Rn es la unión disjunta de las traslaciones de Π por los vectores de Λ:

Rn = ⊔
u∈Λ

(Π+u).
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El volumen del paralelepípedo fundamental es el determinante de la matriz formada por los vectores
ω1, . . . ,ωn

volΠ= |det A|, A =


ω1
...
ωn


(esto es el significado geométrico del determinante).

Un típico ejemplo de retículo es

Zn = {(a1, . . . , an) | ai ∈Z} ⊂Rn .

Por ejemplo, para n = 2 tenemos el siguiente dibujo:

0
ω1

ω2

La definición de retículo de arriba no es muy conveniente porque esta depende de una elección de una
base particular ω1, . . . ,ωn . El mismo subconjunto Λ ⊂ Rn puede ser generado por diferentes vectores. Por
ejemplo, en el caso de arriba podríamos tomar como otra base

0

ω1
ω2

Sin embargo, si (ω1, . . . ,ωn) y (ω′
1, . . . ,ω′

n) son dos bases Z-lineales de Λ, entonces el cambio de base ne-
cesariamente se realiza por una matriz invertible T con elementos enteros:

T ∈ Mn(Z)× =: GLn(Z) ⇐⇒ detT ∈Z× = {±1}.

Entonces,

det


ω1
...
ωn

=±det


ω′

1
...
ω′

n

 .
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Esto demuestra que los paralelepípedos fundamentales que corresponden a diferentes bases tienen el mis-
mo volumen. Este es un invariante del conjunto Λ y podemos denotarlo por detΛ.

Recordemos que se dice que un subconjunto X ⊆ Rn es convexo si para todo x, y ∈ X el segmento de la
recta entre x e y también pertenece a X :

(1−λ) x +λ y ∈ X para todo λ ∈ [0,1].

Además, se dice que X es simétrico (respecto al origen), si para todo x ∈ X también −x ∈ X .
El teorema de Minkowski nos dice algo intuitivamente claro: si X es un conjunto convexo simétrico

suficientemente grande, entonces X debe contener puntos no nulos del retículo.

Teorema (Minkowski). Sea Λ⊂Rn un retículo y sea X ⊆Rn un conjunto convexo simétrico tal que

vol X > 2n detΛ.

Entonces, X contiene un punto no nulo de Λ.

0

Para entender el significado del múltiplo 2n en la cota del teorema, podemos considerar el hipercubo
abierto con 2n vértices en (±1,±1, . . . ,±1). Consideremos el retículo Λ := Zn ⊂ Rn . El volumen del cubo es
2n = detΛ, pero el cubo no contiene ningún punto de Λ salvo 0.

0

Para demostrar el teorema, necesitamos el siguiente resultado auxiliar.

Lema (Blichfeldt). Sea X ⊂Rn un conjuntomedible*. Si vol X > detΛ, entonces existe un par de puntos diferentes
x, x ′ ∈ X tales que x −x ′ ∈Λ.

*En particular, todo conjunto convexo es medible.
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Demostración. Puesto que
Rn = ⊔

u∈Λ
(Π+u),

tenemos
X = ⊔

u∈Λ
X ∩ (Π+u),

Así que
vol X = ∑

u∈Λ
vol(X ∩ (Π+u)) = ∑

u∈Λ
vol((X −u)∩Π).

Por nuestra hipótesis, vol X > volΠ, de donde los conjuntos

(X −u)∩Π⊆Π (u ∈Λ)

no pueden ser disjuntos, luego existen u,u′ ∈Λ tales que

(X −u)∩ (X −u′) ̸= ;.

Tomando
v ∈ (X −u)∩ (X −u′),

tenemos
x = v +u, x ′ = v +u′ ∈ X , x −x ′ = u −u′ ∈Λ. ■

Ahora estamos listos para demostrar el teorema de Minkowski. Consideremos el conjunto

1

2
X :=

{1

2
x

∣∣∣ x ∈ X
}

.

Tenemos
vol

(
1

2
X

)
= 1

2n vol X > detΛ,

así que por el lema de Blichfeldt existen dos puntos distintos x, x ′ ∈ 1
2 X tales que x − x ′ ∈Λ. Para terminar

la demostración, sería suficiente ver que este punto pertenece a X . Por la hipótesis que X es simétrico,
−x ′ ∈ 1

2 X y luego

x = 1

2
y , −x ′ = 1

2
y ′ para algunos y , y ′ ∈ X .

El punto
x −x ′ = 1

2
y + 1

2
y ′,

pertenece a X , siendo una combinación convexa de dos puntos y , y ′ ∈ X . ■

3 Ejemplo: el teorema de Fermat sobre dos cuadrados

Para entender mejor el uso del teorema de Minkowski, empecemos por un resultado más sencillo, des-
cubierto en 1640 por Fermat.

Un primo impar p es una suma de dos cuadrados si y solamente si p ≡ 1 (mód 4).

Por ejemplo,
5 = 12 +22, 13 = 22 +32, 17 = 12 +42, 29 = 22 +52, 37 = 12 +62.

(De hecho, la representación p = a2 + b2 es única salvo una permutación de a y b y sus signos, pero nos
contentaremos con una demostración de existencia de estas representaciones.)
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3.1. Observación. La condición p ≡ 1 (mód 4) es necesaria para que p sea una suma de dos cuadrados.

Demostración. Los cuadrados módulo 4 son 0 = 02 ≡ 22 y 1 = 12 ≡ 32. Luego, a2 y b2 no pueden dar el mismo
resto módulo 4: en este caso su suma sería par. ■

Recordemos el siguiente resultado.

3.2. Lema. −1 es un residuo cuadrático módulo p si y solamente si p ̸≡ 3 (mód 4).

Demostración. Necesitamos ver que en el cuerpo finito Fp se cumple−1 = x2 para algún x ∈ Fp si y solamente
si p ̸≡ 3 (mód 4).

Si p = 2, entonces −1 = 1 = 12. Podemos suponer que p > 2.
Para p > 2 la identidad −1 = x2 en Fp implica que x es una raíz cuarta primitiva de la unidad:

x ̸= 1, x2 =−1 ̸= 1, x3 =−x ̸= 1, x4 = 1.

Viceversa, supongamos que existe x ∈ Fp tal que

x ̸= 1, x2 ̸= 1, x3 ̸= 1, x4 = 1.

En particular, x2 ̸= 1 implica que también x ̸= −1. Luego, de la ecuación

0 = x4 −1 = (x −1)(x +1)(x2 +1),

podemos deducir que x2 =−1.
Esto demuestra que −1 es un residuo cuadrático en Fp si y solamente si Fp contiene una raíz cuarta

primitiva de la unidad. Esto se reduce a la existencia de un elemento de orden 4 en el grupo F×p . El último es
cíclico de orden p −1 y por lo tanto contiene un elemento de orden 4 si y solamente si

4 | (p −1) ⇐⇒ p −1 = 4k para algún k ⇐⇒ p ≡ 1 (mód 4). ■

Ahora si p ≡ 1 (mód 4), por el lema de arriba existe m ∈Z tal que

1+m2 ≡ 0 (mód p).

Consideremos los vectores
ω1 := (1,m), ω2 := (0, p).

Estos definen un retículo

Λ := {a1ω1 +a2ω2 | a1, a2 ∈Z} = {(a1, a1m +a2p) | a1, a2 ∈Z} ⊂R2.

Tenemos
detΛ= det

(
1 m
0 p

)
= p.

3.3. Observación. Para todo u ∈Λ el número ∥u∥2 es entero y es divisible por p.

Demostración. Si
u = a1ω1 +a2ω2 = (a1, a1m +a2p),

entonces

∥u∥2 = a2
1 + (a1m +a2p)2 = a2

1 (1+m2)+2 a1a2mp +a2
2 p2 ≡ a2

1 (1+m2) ≡ 0 (mód p). ■
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Ahora sea X ⊂R2 el disco abierto de radio r =√
2p centrado en el origen:

X := {x ∈R2 | ∥x∥2 < 2p}.

Es un conjunto convexo simétrico de área

πr 2 = 2πp > 22 detΛ= 4p.

Entonces, por el teorema de Minkowski, existe un punto u ∈Λ\ {0} tal que u ∈ X . Luego,

0 < ∥u∥2 < 2p, p | ∥u∥2.

Esto implica que
p = ∥u∥2 = a2

1 + (a1m +a2p)2.

Es una representación de p como una suma de dos cuadrados. Esto termina nuestra demostración del re-
sultado de Fermat. ■

Para ver algún ejemplo específico, sea p = 5. Tenemos 22 +1 ≡ 0 (mód 5), así que podemos tomar m = 2.
Luego,

Λ= {a1 (1,2)+a2 (0,5) | a1, a2 ∈Z} = {(a1, a1 ·2+a2 ·5) | a1, a2 ∈Z} = {(a1, a1 ·2+a2 ·5) | a1, a2 ∈Z}.

Consideremos el siguiente dibujo con Λ y el disco de radio
√

2p =p
10 = 3,16. . .

(0,0)

(1,2)

(0,5)

Tenemos cuatro puntos no nulos del retículo Λ en el disco: (±1,±2). Estos nos dan

5 = 12 +22.

4 Demostración del teorema de los cuatro cuadrados

Gracias a la identidad de Euler, sería suficiente representar cualquier número primo p como una suma
de cuadrados

p = a2 +b2 + c2 +d 2.

De nuevo, vamos a construir un retículo Λ y un conjunto convexo simétrico X tal que la existencia de un
punto no nulo x ∈Λ en X nos da una suma de cuadrados como arriba.
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4.1. Lema. Para todo primo p existen m,n ∈Z tales que

m2 +n2 +1 ≡ 0 (mód p).

Demostración. Si p = 2, podemos tomar m = 1, n = 0.
Ahora supongamos que p > 2. El grupo F×p es cíclico de orden p −1 y por lo tanto precisamente la mitad

de los elementos de F×p son cuadrados (son las potencias pares de un generador de F×p ):

#{x2 | x ∈ F×p } = p −1

2
.

Luego,

#{x2 | x ∈ Fp } = p −1

2
+1 = p +1

2
.

Además, tenemos
#{−1− y2 | y ∈ Fp } = p +1

2
.

Se sigue que
{x2 | x ∈ Fp }∩ {−1− y2 | y ∈ Fp } ̸= ;;

es decir,
x2 + y2 +1 = 0

para algunos x, y ∈ Fp . ■
Fijemos dos números enteros m y n tales que

m2 +n2 +1 ≡ 0 (mód p).

Consideremos los siguientes vectores en R4:

ω1 = (1,0,m,n), ω2 = (0,1,n,−m), ω3 = (0,0, p,0), ω4 = (0,0,0, p).

Son linealmente independientes. De hecho, podemos calcular el determinante de la matriz formada por
ellos:

det


1 0 m n
0 1 n −m
0 0 p 0
0 0 0 p

= p2

(es una matriz triangular). Esto quiere decir que

Λ := {a1ω1 +a2ω2 +a3ω3 +a4ω4 | a1, a2, a3, a4 ∈Z} ⊂R4

es un retículo y
detΛ= p2.

4.2. Observación. Para todo u ∈Λ el número ∥u∥2 es entero y es divisible por p.

Demostración. Si

u = a1ω1 +a2ω2 +a3ω3 +a4ω4 = (a1, a2, a1 m +a2 n +a3 p, a1 n −a2 m +a4 p),

entonces

∥u∥2 = a2
1 +a2

2 + (a1 m +a2 n +a3 p)2 + (a1 n −a2 m +a4 p)2

≡ a2
1 +a2

2 + (a1 m +a2 n)2 + (a1 n −a2 m)2 (mód p).

Luego,
a2

1 +a2
2 + (a1 m +a2 n)2 + (a1 n −a2 m)2 = (a2

1 +a2
2) (m2 +n2 +1)

y m2 +n2 +1 ≡ 0 (mód p) por nuestra elección de m y n. ■
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Sea X la bola abierta en R4 de radio r =√
2p centrada en el origen:

X := {x ∈R4 | ∥x∥2 < 2p}.

Recordemos que en general la bola n-dimensional de radio r tiene volumen

πn/2

Γ
( n

2 +1
) r n .

En este caso n = 4 y Γ
( n

2 +1
)= Γ(3) = 2! = 2. Tenemos

vol X = π2r 4

2
= 2π2p2 > 24 detΛ= 16 p2

(de hecho, 2π2 = 19,73. . . > 16). Entonces, según el teorema de Minkowski, existe un punto u ∈Λ\ {0} tal que
u ∈ X . De las desigualdades

0 < ∥u∥2 < 2p, p | ∥u∥2.

podemos concluir que
∥u∥2 = p.

Esto nos da una representación de p como una suma de cuatro cuadrados. ■
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Apéndice. Algunas sumas de cuatro cuadrados

1 = 12

2 = 12 +12

3 = 12 +12 +12

4 = 12 +12 +12 +12

= 22

5 = 22 +12

6 = 22 +12 +12

7 = 22 +12 +12 +12

8 = 22 +22

9 = 22 +22 +12

= 32

10 = 22 +22 +12 +12

= 32 +12

11 = 32 +12 +12

12 = 22 +22 +22

= 32 +12 +12 +12

13 = 22 +22 +22 +12

= 32 +22

14 = 32 +22 +12

15 = 32 +22 +12 +12

16 = 22 +22 +22 +22

= 42

17 = 32 +22 +22

= 42 +12

18 = 32 +22 +22 +12

= 32 +32

= 42 +12 +12

19 = 32 +32 +12

= 42 +12 +12 +12

20 = 32 +32 +12 +12

= 42 +22

21 = 32 +22 +22 +22

= 42 +22 +12

22 = 32 +32 +22

= 42 +22 +12 +12

23 = 32 +32 +22 +12

24 = 42 +22 +22

25 = 42 +22 +22 +12

= 42 +32

= 52

26 = 32 +32 +22 +22

= 42 +32 +12

= 52 +12

27 = 32 +32 +32

= 42 +32 +12 +12

= 52 +12 +12

28 = 32 +32 +32 +12

= 42 +22 +22 +22

= 52 +12 +12 +12

29 = 42 +32 +22

= 52 +22

30 = 42 +32 +22 +12

= 52 +22 +12

31 = 32 +32 +32 +22

= 52 +22 +12 +12

32 = 42 +42

33 = 42 +32 +22 +22

= 42 +42 +12

= 52 +22 +22

34 = 42 +32 +32

= 42 +42 +12 +12

= 52 +22 +22 +12

= 52 +32

35 = 42 +32 +32 +12

= 52 +32 +12

36 = 32 +32 +32 +32

= 42 +42 +22

= 52 +32 +12 +12

= 62
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37 = 42 +42 +22 +12

= 52 +22 +22 +22

= 62 +12

38 = 42 +32 +32 +22

= 52 +32 +22

= 62 +12 +12

39 = 52 +32 +22 +12

= 62 +12 +12 +12

40 = 42 +42 +22 +22

= 62 +22

41 = 42 +42 +32

= 52 +42

= 62 +22 +12

42 = 42 +42 +32 +12

= 52 +32 +22 +22

= 52 +42 +12

= 62 +22 +12 +12

43 = 42 +32 +32 +32

= 52 +32 +32

= 52 +42 +12 +12

44 = 52 +32 +32 +12

= 62 +22 +22

45 = 42 +42 +32 +22

= 52 +42 +22

= 62 +22 +22 +12

= 62 +32

46 = 52 +42 +22 +12

= 62 +32 +12

47 = 52 +32 +32 +22

= 62 +32 +12 +12

48 = 42 +42 +42

= 62 +22 +22 +22

49 = 42 +42 +42 +12

= 52 +42 +22 +22

= 62 +32 +22

= 72

50 = 42 +42 +32 +32

= 52 +42 +32

= 52 +52

= 62 +32 +22 +12

= 72 +12

51 = 52 +42 +32 +12

= 52 +52 +12

= 72 +12 +12

52 = 42 +42 +42 +22

= 52 +32 +32 +32

= 52 +52 +12 +12

= 62 +42

= 72 +12 +12 +12

53 = 62 +32 +22 +22

= 62 +42 +12

= 72 +22

54 = 52 +42 +32 +22

= 52 +52 +22

= 62 +32 +32

= 62 +42 +12 +12

= 72 +22 +12

55 = 52 +52 +22 +12

= 62 +32 +32 +12

= 72 +22 +12 +12

56 = 62 +42 +22

57 = 42 +42 +42 +32

= 52 +42 +42

= 62 +42 +22 +12

= 72 +22 +22

58 = 52 +42 +42 +12

= 52 +52 +22 +22

= 62 +32 +32 +22

= 72 +22 +22 +12

= 72 +32

59 = 52 +42 +32 +32

= 52 +52 +32

= 72 +32 +12

60 = 52 +52 +32 +12

= 62 +42 +22 +22

= 72 +32 +12 +12

61 = 52 +42 +42 +22

= 62 +42 +32

= 62 +52

= 72 +22 +22 +22

11



62 = 62 +42 +32 +12

= 62 +52 +12

= 72 +32 +22

63 = 52 +52 +32 +22

= 62 +32 +32 +32

= 62 +52 +12 +12

= 72 +32 +22 +12

64 = 42 +42 +42 +42

= 82

65 = 62 +42 +32 +22

= 62 +52 +22

= 72 +42

= 82 +12

66 = 52 +42 +42 +32

= 52 +52 +42

= 62 +52 +22 +12

= 72 +32 +22 +22

= 72 +42 +12

= 82 +12 +12

67 = 52 +52 +42 +12

= 72 +32 +32

= 72 +42 +12 +12

= 82 +12 +12 +12

68 = 52 +52 +32 +32

= 62 +42 +42

= 72 +32 +32 +12

= 82 +22

69 = 62 +42 +42 +12

= 62 +52 +22 +22

= 72 +42 +22

= 82 +22 +12

70 = 52 +52 +42 +22

= 62 +42 +32 +32

= 62 +52 +32

= 72 +42 +22 +12

= 82 +22 +12 +12

71 = 62 +52 +32 +12

= 72 +32 +32 +22

72 = 62 +42 +42 +22

= 62 +62

= 82 +22 +22

73 = 52 +42 +42 +42

= 62 +62 +12

= 72 +42 +22 +22

= 82 +22 +22 +12

= 82 +32

74 = 62 +52 +32 +22

= 62 +62 +12 +12

= 72 +42 +32

= 72 +52

= 82 +32 +12

75 = 52 +52 +42 +32

= 52 +52 +52

= 72 +42 +32 +12

= 72 +52 +12

= 82 +32 +12 +12

76 = 52 +52 +52 +12

= 62 +62 +22

= 72 +32 +32 +32

= 72 +52 +12 +12

= 82 +22 +22 +22

77 = 62 +42 +42 +32

= 62 +52 +42

= 62 +62 +22 +12

= 82 +32 +22

78 = 62 +52 +42 +12

= 72 +42 +32 +22

= 72 +52 +22

= 82 +32 +22 +12

79 = 52 +52 +52 +22

= 62 +52 +32 +32

= 72 +52 +22 +12

80 = 62 +62 +22 +22

= 82 +42

81 = 62 +52 +42 +22

= 62 +62 +32

= 72 +42 +42

= 82 +32 +22 +22

= 82 +42 +12

= 92

82 = 52 +52 +42 +42

= 62 +62 +32 +12

= 72 +42 +42 +12

= 72 +52 +22 +22

= 82 +32 +32

= 82 +42 +12 +12

= 92 +12
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83 = 72 +42 +32 +32

= 72 +52 +32

= 82 +32 +32 +12

= 92 +12 +12

84 = 52 +52 +52 +32

= 62 +42 +42 +42

= 72 +52 +32 +12

= 82 +42 +22

= 92 +12 +12 +12

85 = 62 +62 +32 +22

= 72 +42 +42 +22

= 72 +62

= 82 +42 +22 +12

= 92 +22

86 = 62 +52 +42 +32

= 62 +52 +52

= 72 +62 +12

= 82 +32 +32 +22

= 92 +22 +12

87 = 62 +52 +52 +12

= 72 +52 +32 +22

= 72 +62 +12 +12

= 92 +22 +12 +12

88 = 62 +62 +42

= 82 +42 +22 +22

89 = 62 +62 +42 +12

= 72 +62 +22

= 82 +42 +32

= 82 +52

= 92 +22 +22

90 = 62 +52 +52 +22

= 62 +62 +32 +32

= 72 +42 +42 +32

= 72 +52 +42

= 72 +62 +22 +12

= 82 +42 +32 +12

= 82 +52 +12

= 92 +22 +22 +12

= 92 +32

91 = 52 +52 +52 +42

= 72 +52 +42 +12

= 82 +32 +32 +32

= 82 +52 +12 +12

= 92 +32 +12

92 = 62 +62 +42 +22

= 72 +52 +32 +32

= 92 +32 +12 +12

93 = 62 +52 +42 +42

= 72 +62 +22 +22

= 82 +42 +32 +22

= 82 +52 +22

= 92 +22 +22 +22

94 = 72 +52 +42 +22

= 72 +62 +32

= 82 +52 +22 +12

= 92 +32 +22

95 = 62 +52 +52 +32

= 72 +62 +32 +12

= 92 +32 +22 +12

96 = 82 +42 +42

97 = 62 +62 +42 +32

= 62 +62 +52

= 72 +42 +42 +42

= 82 +42 +42 +12

= 82 +52 +22 +22

= 92 +42

98 = 62 +62 +52 +12

= 72 +62 +32 +22

= 72 +72

= 82 +42 +32 +32

= 82 +52 +32

= 92 +32 +22 +22

= 92 +42 +12

99 = 72 +52 +42 +32

= 72 +52 +52

= 72 +72 +12

= 82 +52 +32 +12

= 92 +32 +32

= 92 +42 +12 +12

100 = 52 +52 +52 +52

= 72 +52 +52 +12

= 72 +72 +12 +12

= 82 +42 +42 +22

= 82 +62

= 92 +32 +32 +12

= 102
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